|
import gradio as gr |
|
import os |
|
|
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.llms import HuggingFaceHub |
|
|
|
from pathlib import Path |
|
import chromadb |
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap): |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits, collection_name): |
|
embedding = HuggingFaceEmbeddings() |
|
new_client = chromadb.EphemeralClient() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
client=new_client, |
|
collection_name=collection_name, |
|
) |
|
return vectordb |
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} |
|
) |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
retriever = vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
|
|
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50] |
|
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) |
|
vector_db = create_db(doc_splits, collection_name) |
|
qa_chain = initialize_llmchain( |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
0.7, |
|
1024, |
|
3, |
|
vector_db, |
|
progress |
|
) |
|
return vector_db, collection_name, qa_chain, "Complete!" |
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
def conversation(qa_chain, message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
new_history = history + [(message, response_answer)] |
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
def demo(): |
|
with gr.Blocks(theme="base") as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
collection_name = gr.State() |
|
|
|
gr.Markdown( |
|
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2> |
|
<h3>Ask any questions about your PDF documents, along with follow-ups</h3> |
|
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \ |
|
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i> |
|
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br> |
|
""") |
|
|
|
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") |
|
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) |
|
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) |
|
db_progress = gr.Textbox(label="Vector database initialization", value="None") |
|
|
|
|
|
vector_db, collection_name, qa_chain, status = initialize_demo([document], slider_chunk_size, slider_chunk_overlap, db_progress) |
|
|
|
chatbot = gr.Chatbot(height=300) |
|
msg = gr.Textbox(placeholder="Type message", container=True) |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([msg, chatbot]) |
|
|
|
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) |
|
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) |
|
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False) |
|
|
|
demo.queue().launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|
|
|