|
import gradio as gr |
|
import os |
|
|
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.memory import ConversationBufferMemory |
|
|
|
from pathlib import Path |
|
import chromadb |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
import tqdm |
|
import accelerate |
|
|
|
|
|
|
|
llm_model = "mistralai/Mistral-7B-Instruct-v0.2" |
|
|
|
|
|
default_persist_directory = './chroma_HF/' |
|
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \ |
|
"google/gemma-7b-it","google/gemma-2b-it", \ |
|
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \ |
|
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \ |
|
"google/flan-t5-xxl" |
|
] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
def load_db(): |
|
embedding = HuggingFaceEmbeddings() |
|
vectordb = Chroma( |
|
persist_directory=default_persist_directory, |
|
embedding_function=embedding) |
|
return vectordb |
|
|
|
|
|
|
|
def initialize_llmchain(vector_db, progress=gr.Progress()): |
|
progress(0.5, desc="Initializing HF Hub...") |
|
|
|
|
|
|
|
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": 0.7, "max_new_tokens": 1024, "top_k": 3, "load_in_8bit": True} |
|
) |
|
|
|
else: |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": 0.7, "max_new_tokens": 1024, "top_k": 3} |
|
) |
|
|
|
progress(0.75, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
retriever=vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
|
|
|
|
|