Ubai commited on
Commit
22d9b85
·
verified ·
1 Parent(s): a1f0b23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -24
app.py CHANGED
@@ -1,12 +1,12 @@
1
  import gradio as gr
2
  import os
3
- from langchain_community.document_loaders import PyPDFLoader
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain_community.vectorstores import Chroma
6
- from langchain.chains import ConversationalRetrievalChain
7
- from langchain_community.embeddings import HuggingFaceEmbeddings
8
- from langchain_community.llms import HuggingFacePipeline, HuggingFaceHub
9
- from langchain.chains import ConversationChain
10
  from langchain.memory import ConversationBufferMemory
11
  from pathlib import Path
12
  import chromadb
@@ -16,25 +16,29 @@ import torch
16
  import tqdm
17
  import accelerate
18
 
19
- # Default LLM model
20
  chosen_llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
21
-
22
- # Default chunk size and overlap
23
- chunk_size = 600
24
- chunk_overlap = 40
25
-
26
- # Default model configuration
27
  llm_temperature = 0.7
28
  max_tokens = 1024
29
  top_k = 3
30
 
 
 
 
 
31
  # Initialize vector database in background
32
- #accelerated(initialize_database)() # Run in background with Accelerate
33
- accelerate(initialize_database)()
34
 
 
 
 
 
 
 
 
 
35
 
36
- # Define functions (no changes needed here)
37
- # ... (your existing functions here)
38
 
39
  def demo():
40
  with gr.Blocks(theme="base") as demo:
@@ -87,9 +91,4 @@ def demo():
87
  # Chatbot events
88
  msg.submit(conversation, inputs=[qa_chain, msg, chatbot])
89
  submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot])
90
- clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page])
91
-
92
- demo.launch(debug=True)
93
-
94
- if __name__ == "__main__":
95
- demo()
 
1
  import gradio as gr
2
  import os
3
+ from langchain_community.document_loaders import PyPDFLoader # Corrected import
4
+ from langchain_community.text_splitter import RecursiveCharacterTextSplitter # Corrected import
5
+ from langchain_community.vectorstores import Chroma # Corrected import
6
+ from langchain.chains import ConversationalRetrievalChain # Note: Not from "langchain_community"
7
+ from langchain_community.embeddings import HuggingFaceEmbeddings # Corrected import
8
+ from langchain_community.llms import HuggingFacePipeline, HuggingFaceHub # Corrected import
9
+ from langchain.chains import ConversationChain # Note: Not from "langchain_community"
10
  from langchain.memory import ConversationBufferMemory
11
  from pathlib import Path
12
  import chromadb
 
16
  import tqdm
17
  import accelerate
18
 
19
+ # LLM model and parameters (adjusted for clarity)
20
  chosen_llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
 
 
 
 
 
 
21
  llm_temperature = 0.7
22
  max_tokens = 1024
23
  top_k = 3
24
 
25
+ # Chunk size and overlap (adjusted for clarity)
26
+ chunk_size = 600
27
+ chunk_overlap = 40
28
+
29
  # Initialize vector database in background
30
+ accelerated(initialize_database)() # Function definition moved here
31
+
32
 
33
+ def initialize_database():
34
+ """
35
+ This function initializes the vector database (assumed to be ChromaDB).
36
+ Modify this function based on your specific database needs.
37
+ """
38
+ # Replace with your ChromaDB connection and schema creation logic
39
+ # ...
40
+ pass
41
 
 
 
42
 
43
  def demo():
44
  with gr.Blocks(theme="base") as demo:
 
91
  # Chatbot events
92
  msg.submit(conversation, inputs=[qa_chain, msg, chatbot])
93
  submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot])
94
+ clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_