Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,28 @@ from langchain.document_loaders import PyPDFLoader
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain.llms import HuggingFacePipeline
|
10 |
-
from langchain.chains import ConversationChain
|
11 |
-
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Load PDF document and create doc splits
|
18 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
19 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
20 |
pages = []
|
21 |
for loader in loaders:
|
22 |
pages.extend(loader.load())
|
23 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
-
chunk_size=chunk_size,
|
25 |
-
chunk_overlap=chunk_overlap)
|
26 |
doc_splits = text_splitter.split_documents(pages)
|
27 |
return doc_splits
|
28 |
|
@@ -34,105 +38,98 @@ def create_db(splits, collection_name):
|
|
34 |
documents=splits,
|
35 |
embedding=embedding,
|
36 |
client=new_client,
|
37 |
-
collection_name=collection_name
|
38 |
)
|
39 |
return vectordb
|
40 |
|
41 |
# Initialize langchain LLM chain
|
42 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
llm = HuggingFaceHub(
|
44 |
repo_id=llm_model,
|
45 |
-
model_kwargs=
|
46 |
)
|
|
|
47 |
memory = ConversationBufferMemory(
|
48 |
memory_key="chat_history",
|
49 |
output_key='answer',
|
50 |
return_messages=True
|
51 |
)
|
|
|
52 |
retriever = vector_db.as_retriever()
|
|
|
53 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
54 |
llm,
|
55 |
retriever=retriever,
|
56 |
chain_type="stuff",
|
57 |
memory=memory,
|
58 |
return_source_documents=True,
|
59 |
-
verbose=False
|
60 |
)
|
|
|
61 |
progress(0.9, desc="Done!")
|
62 |
return qa_chain
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
67 |
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
|
68 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
69 |
vector_db = create_db(doc_splits, collection_name)
|
70 |
qa_chain = initialize_llmchain(
|
71 |
-
|
72 |
-
0.7,
|
73 |
-
1024,
|
74 |
-
3,
|
75 |
vector_db,
|
76 |
-
|
77 |
)
|
78 |
return vector_db, collection_name, qa_chain, "Complete!"
|
79 |
|
80 |
-
def
|
81 |
-
|
82 |
-
for
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
def conversation(qa_chain, message, history):
|
88 |
-
formatted_chat_history = format_chat_history(message, history)
|
89 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
90 |
-
response_answer = response["answer"]
|
91 |
-
if response_answer.find("Helpful Answer:") != -1:
|
92 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
93 |
-
response_sources = response["source_documents"]
|
94 |
-
response_source1 = response_sources[0].page_content.strip()
|
95 |
-
response_source2 = response_sources[1].page_content.strip()
|
96 |
-
response_source3 = response_sources[2].page_content.strip()
|
97 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
98 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
99 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
100 |
-
new_history = history + [(message, response_answer)]
|
101 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
102 |
|
103 |
def demo():
|
104 |
with gr.Blocks(theme="base") as demo:
|
105 |
vector_db = gr.State()
|
106 |
-
qa_chain = gr.State()
|
107 |
collection_name = gr.State()
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
if __name__ == "__main__":
|
137 |
-
demo()
|
138 |
-
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
9 |
from langchain.llms import HuggingFaceHub
|
10 |
|
11 |
from pathlib import Path
|
12 |
import chromadb
|
13 |
|
14 |
+
# List of available LLM models
|
15 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1",
|
16 |
+
"google/gemma-7b-it", "google/gemma-2b-it",
|
17 |
+
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
18 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
19 |
+
"google/flan-t5-xxl"
|
20 |
+
]
|
21 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
+
|
23 |
# Load PDF document and create doc splits
|
24 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
25 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
26 |
pages = []
|
27 |
for loader in loaders:
|
28 |
pages.extend(loader.load())
|
29 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
|
|
30 |
doc_splits = text_splitter.split_documents(pages)
|
31 |
return doc_splits
|
32 |
|
|
|
38 |
documents=splits,
|
39 |
embedding=embedding,
|
40 |
client=new_client,
|
41 |
+
collection_name=collection_name
|
42 |
)
|
43 |
return vectordb
|
44 |
|
45 |
# Initialize langchain LLM chain
|
46 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
47 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
48 |
+
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
49 |
+
elif llm_model == "microsoft/phi-2":
|
50 |
+
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
51 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
52 |
+
model_kwargs = {"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
53 |
+
else:
|
54 |
+
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
55 |
+
|
56 |
llm = HuggingFaceHub(
|
57 |
repo_id=llm_model,
|
58 |
+
model_kwargs=model_kwargs
|
59 |
)
|
60 |
+
|
61 |
memory = ConversationBufferMemory(
|
62 |
memory_key="chat_history",
|
63 |
output_key='answer',
|
64 |
return_messages=True
|
65 |
)
|
66 |
+
|
67 |
retriever = vector_db.as_retriever()
|
68 |
+
|
69 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
70 |
llm,
|
71 |
retriever=retriever,
|
72 |
chain_type="stuff",
|
73 |
memory=memory,
|
74 |
return_source_documents=True,
|
75 |
+
verbose=False
|
76 |
)
|
77 |
+
|
78 |
progress(0.9, desc="Done!")
|
79 |
return qa_chain
|
80 |
|
81 |
+
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, db_progress):
|
82 |
+
list_file_path = [file.name for file in list_file_obj if file is not None]
|
|
|
83 |
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
|
84 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
85 |
vector_db = create_db(doc_splits, collection_name)
|
86 |
qa_chain = initialize_llmchain(
|
87 |
+
list_llm[0], # Using Mistral-7B-Instruct-v0.2 as the LLM model
|
88 |
+
0.7, # Temperature
|
89 |
+
1024, # Max Tokens
|
90 |
+
3, # Top K
|
91 |
vector_db,
|
92 |
+
db_progress
|
93 |
)
|
94 |
return vector_db, collection_name, qa_chain, "Complete!"
|
95 |
|
96 |
+
def upload_file(file_obj):
|
97 |
+
list_file_path = []
|
98 |
+
for file in file_obj:
|
99 |
+
if file is not None:
|
100 |
+
file_path = file.name
|
101 |
+
list_file_path.append(file_path)
|
102 |
+
return list_file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def demo():
|
105 |
with gr.Blocks(theme="base") as demo:
|
106 |
vector_db = gr.State()
|
|
|
107 |
collection_name = gr.State()
|
108 |
+
qa_chain = gr.State()
|
109 |
+
|
110 |
+
with gr.Tab("Step 1 - Document pre-processing"):
|
111 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
112 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
113 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
114 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
115 |
+
db_btn = gr.Button("Generate vector database...")
|
116 |
+
|
117 |
+
with gr.Tab("Step 2 - QA chain initialization"):
|
118 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
119 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
120 |
+
|
121 |
+
with gr.Tab("Step 3 - Conversation with chatbot"):
|
122 |
+
chatbot = gr.Chatbot(height=300)
|
123 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
124 |
+
source1_page = gr.Number(label="Page", scale=1)
|
125 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
126 |
+
source2_page = gr.Number(label="Page", scale=1)
|
127 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
128 |
+
source3_page = gr.Number(label="Page", scale=1)
|
129 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
130 |
+
submit_btn = gr.Button("Submit")
|
131 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
132 |
+
|
133 |
+
document.upload(initialize_demo, inputs=[document, slider_chunk_size, slider_chunk_overlap, db_progress], outputs=[vector_db, collection_name, qa_chain, db_progress])
|
134 |
+
qachain_btn.click(initialize_llmchain, inputs=[qa_chain, llm_progress], outputs=[qa_chain, llm_progress])
|
135 |
+
submit_btn.click(lambda: None, inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2
|
|
|
|
|
|