Update app.py
Browse files
app.py
CHANGED
@@ -20,35 +20,21 @@ import torch
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
# default_persist_directory = './chroma_HF/'
|
26 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
27 |
-
"google/gemma-7b-it","google/gemma-2b-it", \
|
28 |
-
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
29 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
30 |
-
"google/flan-t5-xxl"
|
31 |
-
]
|
32 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
33 |
|
34 |
-
# Load PDF document and create doc splits
|
35 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
36 |
-
# Processing for one document only
|
37 |
-
# loader = PyPDFLoader(file_path)
|
38 |
-
# pages = loader.load()
|
39 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
40 |
pages = []
|
41 |
for loader in loaders:
|
42 |
pages.extend(loader.load())
|
43 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
44 |
text_splitter = RecursiveCharacterTextSplitter(
|
45 |
-
chunk_size
|
46 |
-
chunk_overlap
|
47 |
doc_splits = text_splitter.split_documents(pages)
|
48 |
return doc_splits
|
49 |
|
50 |
-
|
51 |
-
# Create vector database
|
52 |
def create_db(splits, collection_name):
|
53 |
embedding = HuggingFaceEmbeddings()
|
54 |
new_client = chromadb.EphemeralClient()
|
@@ -57,137 +43,44 @@ def create_db(splits, collection_name):
|
|
57 |
embedding=embedding,
|
58 |
client=new_client,
|
59 |
collection_name=collection_name,
|
60 |
-
# persist_directory=default_persist_directory
|
61 |
)
|
62 |
return vectordb
|
63 |
|
64 |
-
|
65 |
-
# Load vector database
|
66 |
-
def load_db():
|
67 |
-
embedding = HuggingFaceEmbeddings()
|
68 |
-
vectordb = Chroma(
|
69 |
-
# persist_directory=default_persist_directory,
|
70 |
-
embedding_function=embedding)
|
71 |
-
return vectordb
|
72 |
-
|
73 |
-
|
74 |
-
# Initialize langchain LLM chain
|
75 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
81 |
-
# pipeline=transformers.pipeline(
|
82 |
-
# "text-generation",
|
83 |
-
# model=llm_model,
|
84 |
-
# tokenizer=tokenizer,
|
85 |
-
# torch_dtype=torch.bfloat16,
|
86 |
-
# trust_remote_code=True,
|
87 |
-
# device_map="auto",
|
88 |
-
# # max_length=1024,
|
89 |
-
# max_new_tokens=max_tokens,
|
90 |
-
# do_sample=True,
|
91 |
-
# top_k=top_k,
|
92 |
-
# num_return_sequences=1,
|
93 |
-
# eos_token_id=tokenizer.eos_token_id
|
94 |
-
# )
|
95 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
96 |
-
|
97 |
-
# HuggingFaceHub uses HF inference endpoints
|
98 |
-
progress(0.5, desc="Initializing HF Hub...")
|
99 |
-
# Use of trust_remote_code as model_kwargs
|
100 |
-
# Warning: langchain issue
|
101 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
102 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
103 |
-
llm = HuggingFaceHub(
|
104 |
-
repo_id=llm_model,
|
105 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
106 |
-
)
|
107 |
-
elif llm_model == "microsoft/phi-2":
|
108 |
-
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
109 |
-
llm = HuggingFaceHub(
|
110 |
-
repo_id=llm_model,
|
111 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
112 |
-
)
|
113 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
114 |
-
llm = HuggingFaceHub(
|
115 |
-
repo_id=llm_model,
|
116 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
117 |
-
)
|
118 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
119 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
120 |
-
llm = HuggingFaceHub(
|
121 |
-
repo_id=llm_model,
|
122 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
123 |
-
)
|
124 |
-
else:
|
125 |
-
llm = HuggingFaceHub(
|
126 |
-
repo_id=llm_model,
|
127 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
128 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
129 |
-
)
|
130 |
-
|
131 |
-
progress(0.75, desc="Defining buffer memory...")
|
132 |
memory = ConversationBufferMemory(
|
133 |
memory_key="chat_history",
|
134 |
output_key='answer',
|
135 |
return_messages=True
|
136 |
)
|
137 |
-
|
138 |
-
retriever=vector_db.as_retriever()
|
139 |
-
progress(0.8, desc="Defining retrieval chain...")
|
140 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
141 |
llm,
|
142 |
retriever=retriever,
|
143 |
chain_type="stuff",
|
144 |
memory=memory,
|
145 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
146 |
return_source_documents=True,
|
147 |
-
#return_generated_question=False,
|
148 |
verbose=False,
|
149 |
)
|
150 |
progress(0.9, desc="Done!")
|
151 |
return qa_chain
|
152 |
|
153 |
-
|
154 |
-
# Initialize database
|
155 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
156 |
-
# Create list of documents (when valid)
|
157 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
158 |
-
|
159 |
-
progress(0.1, desc="Creating collection name...")
|
160 |
-
collection_name = Path(list_file_path[0]).stem
|
161 |
-
# Fix potential issues from naming convention
|
162 |
-
## Remove space
|
163 |
-
collection_name = collection_name.replace(" ","-")
|
164 |
-
## Limit lenght to 50 characters
|
165 |
-
collection_name = collection_name[:50]
|
166 |
-
## Enforce start and end as alphanumeric character
|
167 |
-
if not collection_name[0].isalnum():
|
168 |
-
collection_name[0] = 'A'
|
169 |
-
if not collection_name[-1].isalnum():
|
170 |
-
collection_name[-1] = 'Z'
|
171 |
-
# print('list_file_path: ', list_file_path)
|
172 |
-
print('Collection name: ', collection_name)
|
173 |
-
progress(0.25, desc="Loading document...")
|
174 |
-
# Load document and create splits
|
175 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
176 |
-
# Create or load vector database
|
177 |
-
progress(0.5, desc="Generating vector database...")
|
178 |
-
# global vector_db
|
179 |
vector_db = create_db(doc_splits, collection_name)
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
189 |
-
return qa_chain, "Complete!"
|
190 |
-
|
191 |
|
192 |
def format_chat_history(message, chat_history):
|
193 |
formatted_chat_history = []
|
@@ -195,13 +88,9 @@ def format_chat_history(message, chat_history):
|
|
195 |
formatted_chat_history.append(f"User: {user_message}")
|
196 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
197 |
return formatted_chat_history
|
198 |
-
|
199 |
|
200 |
def conversation(qa_chain, message, history):
|
201 |
formatted_chat_history = format_chat_history(message, history)
|
202 |
-
#print("formatted_chat_history",formatted_chat_history)
|
203 |
-
|
204 |
-
# Generate response using QA chain
|
205 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
206 |
response_answer = response["answer"]
|
207 |
if response_answer.find("Helpful Answer:") != -1:
|
@@ -210,35 +99,25 @@ def conversation(qa_chain, message, history):
|
|
210 |
response_source1 = response_sources[0].page_content.strip()
|
211 |
response_source2 = response_sources[1].page_content.strip()
|
212 |
response_source3 = response_sources[2].page_content.strip()
|
213 |
-
# Langchain sources are zero-based
|
214 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
215 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
216 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
217 |
-
# print ('chat response: ', response_answer)
|
218 |
-
# print('DB source', response_sources)
|
219 |
-
|
220 |
-
# Append user message and response to chat history
|
221 |
new_history = history + [(message, response_answer)]
|
222 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
223 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
224 |
-
|
225 |
|
226 |
def upload_file(file_obj):
|
227 |
list_file_path = []
|
228 |
for idx, file in enumerate(file_obj):
|
229 |
file_path = file_obj.name
|
230 |
list_file_path.append(file_path)
|
231 |
-
# print(file_path)
|
232 |
-
# initialize_database(file_path, progress)
|
233 |
return list_file_path
|
234 |
|
235 |
-
|
236 |
def demo():
|
237 |
with gr.Blocks(theme="base") as demo:
|
238 |
vector_db = gr.State()
|
239 |
qa_chain = gr.State()
|
240 |
collection_name = gr.State()
|
241 |
-
|
242 |
gr.Markdown(
|
243 |
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
244 |
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
@@ -246,83 +125,21 @@ def demo():
|
|
246 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
247 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
248 |
""")
|
249 |
-
with gr.Tab("
|
250 |
with gr.Row():
|
251 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
252 |
-
|
253 |
-
with gr.Row():
|
254 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
255 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
256 |
with gr.Row():
|
257 |
-
slider_chunk_size = gr.Slider(minimum
|
258 |
with gr.Row():
|
259 |
-
slider_chunk_overlap = gr.Slider(minimum
|
260 |
with gr.Row():
|
261 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
262 |
with gr.Row():
|
263 |
-
|
264 |
-
|
265 |
-
with gr.Tab("Step 2 - QA chain initialization"):
|
266 |
-
with gr.Row():
|
267 |
-
llm_btn = gr.Radio(list_llm_simple, \
|
268 |
-
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
269 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
270 |
with gr.Row():
|
271 |
-
slider_temperature = gr.Slider(minimum
|
272 |
-
with gr.Row():
|
273 |
-
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
274 |
-
with gr.Row():
|
275 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
276 |
-
with gr.Row():
|
277 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
278 |
-
with gr.Row():
|
279 |
-
qachain_btn = gr.Button("Initialize question-answering chain...")
|
280 |
-
|
281 |
-
with gr.Tab("Step 3 - Conversation with chatbot"):
|
282 |
-
chatbot = gr.Chatbot(height=300)
|
283 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
284 |
-
with gr.Row():
|
285 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
286 |
-
source1_page = gr.Number(label="Page", scale=1)
|
287 |
with gr.Row():
|
288 |
-
|
289 |
-
source2_page = gr.Number(label="Page", scale=1)
|
290 |
-
with gr.Row():
|
291 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
292 |
-
source3_page = gr.Number(label="Page", scale=1)
|
293 |
-
with gr.Row():
|
294 |
-
msg = gr.Textbox(placeholder="Type message", container=True)
|
295 |
-
with gr.Row():
|
296 |
-
submit_btn = gr.Button("Submit")
|
297 |
-
clear_btn = gr.ClearButton([msg, chatbot])
|
298 |
-
|
299 |
-
# Preprocessing events
|
300 |
-
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
301 |
-
db_btn.click(initialize_database, \
|
302 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
303 |
-
outputs=[vector_db, collection_name, db_progress])
|
304 |
-
qachain_btn.click(initialize_LLM, \
|
305 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
306 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
307 |
-
inputs=None, \
|
308 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
309 |
-
queue=False)
|
310 |
-
|
311 |
-
# Chatbot events
|
312 |
-
msg.submit(conversation, \
|
313 |
-
inputs=[qa_chain, msg, chatbot], \
|
314 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
315 |
-
queue=False)
|
316 |
-
submit_btn.click(conversation, \
|
317 |
-
inputs=[qa_chain, msg, chatbot], \
|
318 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
319 |
-
queue=False)
|
320 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
321 |
-
inputs=None, \
|
322 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
323 |
-
queue=False)
|
324 |
-
demo.queue().launch(debug=True)
|
325 |
-
|
326 |
-
|
327 |
-
if __name__ == "__main__":
|
328 |
-
demo()
|
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
+
# Update list of LLM models
|
24 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
26 |
|
|
|
27 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
28 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
29 |
pages = []
|
30 |
for loader in loaders:
|
31 |
pages.extend(loader.load())
|
|
|
32 |
text_splitter = RecursiveCharacterTextSplitter(
|
33 |
+
chunk_size=chunk_size,
|
34 |
+
chunk_overlap=chunk_overlap)
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
|
|
|
|
38 |
def create_db(splits, collection_name):
|
39 |
embedding = HuggingFaceEmbeddings()
|
40 |
new_client = chromadb.EphemeralClient()
|
|
|
43 |
embedding=embedding,
|
44 |
client=new_client,
|
45 |
collection_name=collection_name,
|
|
|
46 |
)
|
47 |
return vectordb
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
50 |
+
llm = HuggingFaceHub(
|
51 |
+
repo_id=llm_model,
|
52 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
53 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
memory = ConversationBufferMemory(
|
55 |
memory_key="chat_history",
|
56 |
output_key='answer',
|
57 |
return_messages=True
|
58 |
)
|
59 |
+
retriever = vector_db.as_retriever()
|
|
|
|
|
60 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
61 |
llm,
|
62 |
retriever=retriever,
|
63 |
chain_type="stuff",
|
64 |
memory=memory,
|
|
|
65 |
return_source_documents=True,
|
|
|
66 |
verbose=False,
|
67 |
)
|
68 |
progress(0.9, desc="Done!")
|
69 |
return qa_chain
|
70 |
|
71 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, llm_temperature, max_tokens, top_k, progress=gr.Progress()):
|
|
|
|
|
|
|
72 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
73 |
+
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
|
|
|
|
|
|
75 |
vector_db = create_db(doc_splits, collection_name)
|
76 |
+
qa_chain = initialize_llmchain(
|
77 |
+
list_llm[0],
|
78 |
+
llm_temperature,
|
79 |
+
max_tokens,
|
80 |
+
top_k,
|
81 |
+
vector_db,
|
82 |
+
progress)
|
83 |
+
return vector_db, collection_name, qa_chain, "Complete!"
|
|
|
|
|
|
|
84 |
|
85 |
def format_chat_history(message, chat_history):
|
86 |
formatted_chat_history = []
|
|
|
88 |
formatted_chat_history.append(f"User: {user_message}")
|
89 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
90 |
return formatted_chat_history
|
|
|
91 |
|
92 |
def conversation(qa_chain, message, history):
|
93 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
|
|
94 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
95 |
response_answer = response["answer"]
|
96 |
if response_answer.find("Helpful Answer:") != -1:
|
|
|
99 |
response_source1 = response_sources[0].page_content.strip()
|
100 |
response_source2 = response_sources[1].page_content.strip()
|
101 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
102 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
103 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
104 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
|
|
|
|
|
|
105 |
new_history = history + [(message, response_answer)]
|
|
|
106 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
107 |
|
108 |
def upload_file(file_obj):
|
109 |
list_file_path = []
|
110 |
for idx, file in enumerate(file_obj):
|
111 |
file_path = file_obj.name
|
112 |
list_file_path.append(file_path)
|
|
|
|
|
113 |
return list_file_path
|
114 |
|
|
|
115 |
def demo():
|
116 |
with gr.Blocks(theme="base") as demo:
|
117 |
vector_db = gr.State()
|
118 |
qa_chain = gr.State()
|
119 |
collection_name = gr.State()
|
120 |
+
|
121 |
gr.Markdown(
|
122 |
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
123 |
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
|
|
125 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
126 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
127 |
""")
|
128 |
+
with gr.Tab("Chatbot"):
|
129 |
with gr.Row():
|
130 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
131 |
+
db_btn = gr.Button("Generate vector database...")
|
|
|
|
|
132 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
133 |
with gr.Row():
|
134 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
135 |
with gr.Row():
|
136 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
137 |
with gr.Row():
|
138 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
139 |
with gr.Row():
|
140 |
+
llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
|
|
|
|
|
|
|
|
|
|
|
141 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
142 |
with gr.Row():
|
143 |
+
slider_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Row():
|
145 |
+
slider_maxtokens = gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|