Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
|
7 |
+
class SinogramAnalysisSystem:
|
8 |
+
def __init__(self):
|
9 |
+
print("Initializing system...")
|
10 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# Load analysis models
|
13 |
+
print("Loading tumor detection models...")
|
14 |
+
self.tumor_classifier = AutoModelForImageClassification.from_pretrained(
|
15 |
+
"SIATCN/vit_tumor_classifier"
|
16 |
+
).to(self.device)
|
17 |
+
self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
|
18 |
+
|
19 |
+
self.size_classifier = AutoModelForImageClassification.from_pretrained(
|
20 |
+
"SIATCN/vit_tumor_radius_detection_finetuned"
|
21 |
+
).to(self.device)
|
22 |
+
self.size_processor = AutoImageProcessor.from_pretrained(
|
23 |
+
"SIATCN/vit_tumor_radius_detection_finetuned"
|
24 |
+
)
|
25 |
+
|
26 |
+
# Load Hymba model
|
27 |
+
print("Loading Hymba model...")
|
28 |
+
repo_name = "nvidia/Hymba-1.5B-Base"
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
30 |
+
self.llm = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
31 |
+
self.llm = self.llm.to(self.device).to(torch.bfloat16)
|
32 |
+
|
33 |
+
print("System ready!")
|
34 |
+
|
35 |
+
def process_sinogram(self, image):
|
36 |
+
if isinstance(image, str):
|
37 |
+
image = Image.open(image)
|
38 |
+
if image.mode != 'RGB':
|
39 |
+
image = image.convert('RGB')
|
40 |
+
return image.resize((224, 224))
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def analyze_sinogram(self, processed_image):
|
44 |
+
# Detect tumor
|
45 |
+
inputs = self.tumor_processor(processed_image, return_tensors="pt").to(self.device)
|
46 |
+
outputs = self.tumor_classifier(**inputs)
|
47 |
+
tumor_present = outputs.logits.softmax(dim=-1)[0].cpu()
|
48 |
+
has_tumor = tumor_present[1] > tumor_present[0]
|
49 |
+
|
50 |
+
# Assess size
|
51 |
+
size_inputs = self.size_processor(processed_image, return_tensors="pt").to(self.device)
|
52 |
+
size_outputs = self.size_classifier(**size_inputs)
|
53 |
+
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
|
54 |
+
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
|
55 |
+
tumor_size = sizes[size_pred.argmax().item()]
|
56 |
+
|
57 |
+
return has_tumor, tumor_size
|
58 |
+
|
59 |
+
def generate_report(self, tumor_present, tumor_size):
|
60 |
+
prompt = f"""As a medical professional, provide a brief analysis of these sinogram findings:
|
61 |
+
|
62 |
+
Findings:
|
63 |
+
- Tumor Detection: {'Positive' if tumor_present else 'Negative'}
|
64 |
+
- Tumor Size: {tumor_size} cm
|
65 |
+
|
66 |
+
Please provide:
|
67 |
+
1. Brief interpretation
|
68 |
+
2. Clinical recommendations
|
69 |
+
3. Follow-up plan"""
|
70 |
+
|
71 |
+
# Generate response using Hymba
|
72 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
73 |
+
outputs = self.llm.generate(
|
74 |
+
**inputs,
|
75 |
+
max_length=512,
|
76 |
+
do_sample=True,
|
77 |
+
temperature=0.7,
|
78 |
+
use_cache=True
|
79 |
+
)
|
80 |
+
|
81 |
+
response = self.tokenizer.decode(
|
82 |
+
outputs[0][inputs['input_ids'].shape[1]:],
|
83 |
+
skip_special_tokens=True
|
84 |
+
)
|
85 |
+
|
86 |
+
return response.strip()
|
87 |
+
|
88 |
+
def analyze_image(self, image):
|
89 |
+
try:
|
90 |
+
# Process sinogram
|
91 |
+
processed = self.process_sinogram(image)
|
92 |
+
tumor_present, tumor_size = self.analyze_sinogram(processed)
|
93 |
+
|
94 |
+
# Generate medical report
|
95 |
+
report = self.generate_report(tumor_present, tumor_size)
|
96 |
+
|
97 |
+
# Format results
|
98 |
+
return f"""
|
99 |
+
SINOGRAM ANALYSIS:
|
100 |
+
• Tumor Detection: {'Positive' if tumor_present else 'Negative'}
|
101 |
+
• Size Assessment: {tumor_size} cm
|
102 |
+
|
103 |
+
MEDICAL REPORT:
|
104 |
+
{report}
|
105 |
+
"""
|
106 |
+
except Exception as e:
|
107 |
+
return f"Error during analysis: {str(e)}"
|
108 |
+
|
109 |
+
def create_interface():
|
110 |
+
system = SinogramAnalysisSystem()
|
111 |
+
|
112 |
+
iface = gr.Interface(
|
113 |
+
fn=system.analyze_image,
|
114 |
+
inputs=[
|
115 |
+
gr.Image(type="pil", label="Upload Sinogram")
|
116 |
+
],
|
117 |
+
outputs=[
|
118 |
+
gr.Textbox(label="Analysis Results", lines=15)
|
119 |
+
],
|
120 |
+
title="Sinogram Analysis System",
|
121 |
+
description="Upload a sinogram for tumor detection and medical assessment."
|
122 |
+
)
|
123 |
+
|
124 |
+
return iface
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
interface = create_interface()
|
128 |
+
interface.launch(debug=True, share=True)
|