Spaces:
Runtime error
Runtime error
File size: 13,868 Bytes
9b86949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch
from typing import Tuple, Optional, Dict, Any
from dataclasses import dataclass
import random
import tempfile
import webbrowser
import os
from datetime import datetime
@dataclass
class PatientMetadata:
age: int
smoking_status: str
family_history: bool
menopause_status: str
previous_mammogram: bool
breast_density: str
hormone_therapy: bool
@dataclass
class AnalysisResult:
has_tumor: bool
tumor_size: str
metadata: PatientMetadata
class BreastSinogramAnalyzer:
def __init__(self):
"""Initialize the analyzer with required models."""
print("Initializing system...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {self.device}")
self._init_vision_models()
self._init_llm()
print("Initialization complete!")
def _init_vision_models(self) -> None:
"""Initialize vision models for abnormality detection and size measurement."""
print("Loading detection models...")
self.tumor_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_classifier"
).to(self.device).eval()
self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
self.size_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
).to(self.device).eval()
self.size_processor = AutoImageProcessor.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
)
def _init_llm(self) -> None:
"""Initialize the Qwen language model for report generation."""
print("Loading Qwen language model...")
self.model_name = "Qwen/QwQ-32B-Preview"
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def _generate_synthetic_metadata(self) -> PatientMetadata:
"""Generate realistic patient metadata for breast cancer screening."""
age = random.randint(40, 75)
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
family_history = random.choice([True, False])
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
previous_mammogram = random.choice([True, False])
breast_density = random.choice(["A: Almost entirely fatty",
"B: Scattered fibroglandular",
"C: Heterogeneously dense",
"D: Extremely dense"])
hormone_therapy = random.choice([True, False])
return PatientMetadata(
age=age,
smoking_status=smoking_status,
family_history=family_history,
menopause_status=menopause_status,
previous_mammogram=previous_mammogram,
breast_density=breast_density,
hormone_therapy=hormone_therapy
)
def _process_image(self, image: Image.Image) -> Image.Image:
"""Process input image for model consumption."""
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
@torch.no_grad()
def _analyze_image(self, image: Image.Image) -> AnalysisResult:
"""Perform abnormality detection and size measurement."""
metadata = self._generate_synthetic_metadata()
# Detect abnormality
tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device)
tumor_outputs = self.tumor_detector(**tumor_inputs)
tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
has_tumor = tumor_probs[1] > tumor_probs[0]
# Measure size if tumor detected
size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
size_outputs = self.size_detector(**size_inputs)
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
tumor_size = sizes[size_pred.argmax().item()]
return AnalysisResult(has_tumor, tumor_size, metadata)
def _generate_medical_report(self, analysis: AnalysisResult) -> str:
"""Generate a clear medical report using Qwen."""
try:
messages = [
{
"role": "system",
"content": "You are a radiologist providing clear and straightforward medical reports. Focus on clarity and actionable recommendations."
},
{
"role": "user",
"content": f"""Generate a clear medical report for this breast imaging scan:
Scan Results:
- Finding: {'Abnormal area detected' if analysis.has_tumor else 'No abnormalities detected'}
{f'- Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
Patient Information:
- Age: {analysis.metadata.age} years
- Risk factors: {', '.join([
'family history of breast cancer' if analysis.metadata.family_history else '',
f'{analysis.metadata.smoking_status.lower()}',
'currently on hormone therapy' if analysis.metadata.hormone_therapy else ''
]).strip(', ')}
Please provide:
1. A clear interpretation of the findings
2. A specific recommendation for next steps"""
}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=128,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
if len(response.split()) >= 10:
return f"""FINDINGS AND RECOMMENDATIONS:
{response}"""
return self._generate_fallback_report(analysis)
except Exception as e:
print(f"Error in report generation: {str(e)}")
return self._generate_fallback_report(analysis)
def _generate_fallback_report(self, analysis: AnalysisResult) -> str:
"""Generate a clear fallback report."""
if analysis.has_tumor:
return f"""FINDINGS AND RECOMMENDATIONS:
Finding: An abnormal area measuring {analysis.tumor_size} cm was detected during the scan.
Recommendation: {'An immediate follow-up with conventional mammogram and ultrasound is required.' if analysis.tumor_size in ['1.0', '1.5'] else 'A follow-up scan is recommended in 6 months.'}"""
else:
return """FINDINGS AND RECOMMENDATIONS:
Finding: No abnormal areas were detected during this scan.
Recommendation: Continue with routine screening as per standard guidelines."""
def _generate_print_preview(self, analysis_text: str, image: Image.Image) -> str:
"""Generate an HTML print preview."""
temp_dir = tempfile.gettempdir()
temp_image_path = os.path.join(temp_dir, 'scan_image.png')
image.save(temp_image_path)
current_date = datetime.now().strftime("%B %d, %Y")
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<title>Medical Imaging Report</title>
<style>
@media print {{
body {{
font-family: Arial, sans-serif;
line-height: 1.6;
padding: 20px;
max-width: 800px;
margin: 0 auto;
}}
.header {{
text-align: center;
margin-bottom: 30px;
border-bottom: 2px solid #000;
padding-bottom: 10px;
}}
.date {{
text-align: right;
margin-bottom: 20px;
}}
.content {{
margin-bottom: 30px;
}}
.scan-image {{
text-align: center;
margin: 20px 0;
}}
.scan-image img {{
max-width: 500px;
height: auto;
}}
.footer {{
margin-top: 50px;
border-top: 1px solid #000;
padding-top: 20px;
}}
@page {{
size: A4;
margin: 2cm;
}}
.no-print {{
display: none;
}}
}}
/* Screen-only styles */
body {{
font-family: Arial, sans-serif;
line-height: 1.6;
padding: 20px;
max-width: 800px;
margin: 0 auto;
}}
.print-button {{
background-color: #007bff;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
margin-bottom: 20px;
}}
.print-button:hover {{
background-color: #0056b3;
}}
</style>
</head>
<body>
<button onclick="window.print()" class="print-button no-print">Print Report</button>
<div class="header">
<h1>Medical Imaging Report</h1>
</div>
<div class="date">
Report Date: {current_date}
</div>
<div class="scan-image">
<img src="file://{temp_image_path}" alt="Scan Image">
</div>
<div class="content">
<pre style="white-space: pre-wrap; font-family: Arial, sans-serif;">{analysis_text}</pre>
</div>
<div class="footer">
<p>This report is generated by an automated analysis system and should be reviewed by a qualified healthcare professional.</p>
</div>
</body>
</html>
"""
temp_html_path = os.path.join(temp_dir, 'report.html')
with open(temp_html_path, 'w', encoding='utf-8') as f:
f.write(html_content)
return temp_html_path
def analyze(self, image: Image.Image) -> Tuple[str, str]:
"""Main analysis pipeline."""
try:
processed_image = self._process_image(image)
analysis = self._analyze_image(processed_image)
report = self._generate_medical_report(analysis)
analysis_text = f"""SCAN RESULTS:
{'⚠️ Abnormal area detected' if analysis.has_tumor else '✓ No abnormalities detected'}
{f'Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
PATIENT INFORMATION:
• Age: {analysis.metadata.age} years
• Risk Factors: {', '.join([
'family history of breast cancer' if analysis.metadata.family_history else '',
analysis.metadata.smoking_status.lower(),
'currently on hormone therapy' if analysis.metadata.hormone_therapy else '',
]).strip(', ')}
{report}"""
preview_path = self._generate_print_preview(analysis_text, image)
return analysis_text, preview_path
except Exception as e:
return f"Error during analysis: {str(e)}", ""
def open_print_preview(preview_path: str) -> None:
"""Open the print preview in the default browser."""
if preview_path:
webbrowser.open(f'file://{preview_path}')
return None
def create_interface() -> gr.Blocks:
"""Create the Gradio interface."""
analyzer = BreastSinogramAnalyzer()
with gr.Blocks() as interface:
gr.Markdown("# Breast Imaging Analysis System")
gr.Markdown("Upload a breast image for analysis and medical assessment.")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Breast Image for Analysis")
with gr.Row():
analyze_btn = gr.Button("Analyze Image", variant="primary")
print_btn = gr.Button("Open Print Preview")
output_text = gr.Textbox(label="Analysis Results", lines=20)
preview_path = gr.Textbox(visible=False)
analyze_btn.click(
fn=analyzer.analyze,
inputs=[input_image],
outputs=[output_text, preview_path]
)
print_btn.click(
fn=open_print_preview,
inputs=[preview_path],
outputs=None
)
return interface
if __name__ == "__main__":
print("Starting application...")
interface = create_interface()
interface.launch(debug=True, share=True) |