{analysis_text}
import gradio as gr from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch from typing import Tuple, Optional, Dict, Any from dataclasses import dataclass import random import tempfile import webbrowser import os from datetime import datetime @dataclass class PatientMetadata: age: int smoking_status: str family_history: bool menopause_status: str previous_mammogram: bool breast_density: str hormone_therapy: bool @dataclass class AnalysisResult: has_tumor: bool tumor_size: str metadata: PatientMetadata class BreastSinogramAnalyzer: def __init__(self): """Initialize the analyzer with required models.""" print("Initializing system...") self.device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {self.device}") self._init_vision_models() self._init_llm() print("Initialization complete!") def _init_vision_models(self) -> None: """Initialize vision models for abnormality detection and size measurement.""" print("Loading detection models...") self.tumor_detector = AutoModelForImageClassification.from_pretrained( "SIATCN/vit_tumor_classifier" ).to(self.device).eval() self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier") self.size_detector = AutoModelForImageClassification.from_pretrained( "SIATCN/vit_tumor_radius_detection_finetuned" ).to(self.device).eval() self.size_processor = AutoImageProcessor.from_pretrained( "SIATCN/vit_tumor_radius_detection_finetuned" ) def _init_llm(self) -> None: """Initialize the Qwen language model for report generation.""" print("Loading Qwen language model...") self.model_name = "Qwen/QwQ-32B-Preview" self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype="auto", device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) def _generate_synthetic_metadata(self) -> PatientMetadata: """Generate realistic patient metadata for breast cancer screening.""" age = random.randint(40, 75) smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]) family_history = random.choice([True, False]) menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal" previous_mammogram = random.choice([True, False]) breast_density = random.choice(["A: Almost entirely fatty", "B: Scattered fibroglandular", "C: Heterogeneously dense", "D: Extremely dense"]) hormone_therapy = random.choice([True, False]) return PatientMetadata( age=age, smoking_status=smoking_status, family_history=family_history, menopause_status=menopause_status, previous_mammogram=previous_mammogram, breast_density=breast_density, hormone_therapy=hormone_therapy ) def _process_image(self, image: Image.Image) -> Image.Image: """Process input image for model consumption.""" if image.mode != 'RGB': image = image.convert('RGB') return image.resize((224, 224)) @torch.no_grad() def _analyze_image(self, image: Image.Image) -> AnalysisResult: """Perform abnormality detection and size measurement.""" metadata = self._generate_synthetic_metadata() # Detect abnormality tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device) tumor_outputs = self.tumor_detector(**tumor_inputs) tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu() has_tumor = tumor_probs[1] > tumor_probs[0] # Measure size if tumor detected size_inputs = self.size_processor(image, return_tensors="pt").to(self.device) size_outputs = self.size_detector(**size_inputs) size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu() sizes = ["no-tumor", "0.5", "1.0", "1.5"] tumor_size = sizes[size_pred.argmax().item()] return AnalysisResult(has_tumor, tumor_size, metadata) def _generate_medical_report(self, analysis: AnalysisResult) -> str: """Generate a clear medical report using Qwen.""" try: messages = [ { "role": "system", "content": "You are a radiologist providing clear and straightforward medical reports. Focus on clarity and actionable recommendations." }, { "role": "user", "content": f"""Generate a clear medical report for this breast imaging scan: Scan Results: - Finding: {'Abnormal area detected' if analysis.has_tumor else 'No abnormalities detected'} {f'- Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''} Patient Information: - Age: {analysis.metadata.age} years - Risk factors: {', '.join([ 'family history of breast cancer' if analysis.metadata.family_history else '', f'{analysis.metadata.smoking_status.lower()}', 'currently on hormone therapy' if analysis.metadata.hormone_therapy else '' ]).strip(', ')} Please provide: 1. A clear interpretation of the findings 2. A specific recommendation for next steps""" } ] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) generated_ids = self.model.generate( **model_inputs, max_new_tokens=128, temperature=0.3, top_p=0.9, repetition_penalty=1.1, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] if len(response.split()) >= 10: return f"""FINDINGS AND RECOMMENDATIONS: {response}""" return self._generate_fallback_report(analysis) except Exception as e: print(f"Error in report generation: {str(e)}") return self._generate_fallback_report(analysis) def _generate_fallback_report(self, analysis: AnalysisResult) -> str: """Generate a clear fallback report.""" if analysis.has_tumor: return f"""FINDINGS AND RECOMMENDATIONS: Finding: An abnormal area measuring {analysis.tumor_size} cm was detected during the scan. Recommendation: {'An immediate follow-up with conventional mammogram and ultrasound is required.' if analysis.tumor_size in ['1.0', '1.5'] else 'A follow-up scan is recommended in 6 months.'}""" else: return """FINDINGS AND RECOMMENDATIONS: Finding: No abnormal areas were detected during this scan. Recommendation: Continue with routine screening as per standard guidelines.""" def _generate_print_preview(self, analysis_text: str, image: Image.Image) -> str: """Generate an HTML print preview.""" temp_dir = tempfile.gettempdir() temp_image_path = os.path.join(temp_dir, 'scan_image.png') image.save(temp_image_path) current_date = datetime.now().strftime("%B %d, %Y") html_content = f"""
{analysis_text}