|
from PIL import Image
|
|
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
|
import warnings
|
|
import requests
|
|
import gradio as gr
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
model_name = "google/vit-base-patch16-224"
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
|
model = ViTForImageClassification.from_pretrained(model_name)
|
|
|
|
|
|
api_key = 'NSxtJes9+72thVe2NNQMdA==rVa3tBqCY84IXvi9'
|
|
|
|
def identify_image(image_path):
|
|
"""Identify the food item in the image."""
|
|
image = Image.open(image_path)
|
|
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
predicted_class_idx = logits.argmax(-1).item()
|
|
predicted_label = model.config.id2label[predicted_class_idx]
|
|
food_name = predicted_label.split(',')[0]
|
|
return food_name
|
|
|
|
def get_calories(food_name):
|
|
"""Get the calorie information of the identified food item."""
|
|
api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
|
|
response = requests.get(api_url, headers={'X-Api-Key': api_key})
|
|
if response.status_code == requests.codes.ok:
|
|
nutrition_info = response.json()
|
|
else:
|
|
nutrition_info = {"Error": response.status_code, "Message": response.text}
|
|
return nutrition_info
|
|
|
|
def format_nutrition_info(nutrition_info):
|
|
"""Format the nutritional information into an HTML table."""
|
|
if "Error" in nutrition_info:
|
|
return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
|
|
|
|
if len(nutrition_info) == 0:
|
|
return "No nutritional information found."
|
|
|
|
nutrition_data = nutrition_info[0]
|
|
table = f"""
|
|
<table border="1" style="width: 100%; border-collapse: collapse;">
|
|
<tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
|
|
<tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
|
|
<td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
|
|
<td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
|
|
<td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
|
|
<td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
|
|
<td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
"""
|
|
return table
|
|
|
|
def main_process(image_path):
|
|
"""Identify the food item and fetch its calorie information."""
|
|
food_name = identify_image(image_path)
|
|
nutrition_info = get_calories(food_name)
|
|
formatted_nutrition_info = format_nutrition_info(nutrition_info)
|
|
return formatted_nutrition_info
|
|
|
|
|
|
def gradio_interface(image):
|
|
formatted_nutrition_info = main_process(image)
|
|
return formatted_nutrition_info
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=gr.Image(type="filepath"),
|
|
outputs="html",
|
|
title="Food Identification and Nutrition Info",
|
|
description="Upload an image of food to get nutritional information.",
|
|
allow_flagging="never"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch(share=True) |