smart_mirror / app.py
Aliashraf's picture
Update app.py
6609086 verified
import os
import cv2
import dlib
import numpy as np
import tensorflow as tf
import mediapipe as mp
from flask import Flask, render_template, Response
# Initialize Flask App
app = Flask(__name__)
# Load Face Detector (Dlib)
detector = dlib.get_frontal_face_detector()
# Load Pretrained Model for Skin Analysis (Placeholder)
model_path = "skin_model.h5"
if os.path.exists(model_path):
skin_model = tf.keras.models.load_model(model_path)
else:
skin_model = None
# OpenCV Video Capture
cap = cv2.VideoCapture(0)
# Function to Analyze Skin
def analyze_skin(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
x, y, w, h = face.left(), face.top(), face.width(), face.height()
face_crop = frame[y:y+h, x:x+w]
if skin_model:
face_crop = cv2.resize(face_crop, (224, 224)) / 255.0
prediction = skin_model.predict(np.expand_dims(face_crop, axis=0))
return f"Skin Condition Score: {prediction[0][0]:.2f}"
return "No face detected"
# Video Stream Function
def generate_frames():
while True:
success, frame = cap.read()
if not success:
break
else:
skin_result = analyze_skin(frame)
cv2.putText(frame, skin_result, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/video_feed')
def video_feed():
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.run(debug=True)