Spaces:
Build error
Build error
import os | |
import cv2 | |
import dlib | |
import numpy as np | |
import tensorflow as tf | |
import mediapipe as mp | |
from flask import Flask, render_template, Response | |
# Initialize Flask App | |
app = Flask(__name__) | |
# Load Face Detector (Dlib) | |
detector = dlib.get_frontal_face_detector() | |
# Load Pretrained Model for Skin Analysis (Placeholder) | |
model_path = "skin_model.h5" | |
if os.path.exists(model_path): | |
skin_model = tf.keras.models.load_model(model_path) | |
else: | |
skin_model = None | |
# OpenCV Video Capture | |
cap = cv2.VideoCapture(0) | |
# Function to Analyze Skin | |
def analyze_skin(frame): | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = detector(gray) | |
for face in faces: | |
x, y, w, h = face.left(), face.top(), face.width(), face.height() | |
face_crop = frame[y:y+h, x:x+w] | |
if skin_model: | |
face_crop = cv2.resize(face_crop, (224, 224)) / 255.0 | |
prediction = skin_model.predict(np.expand_dims(face_crop, axis=0)) | |
return f"Skin Condition Score: {prediction[0][0]:.2f}" | |
return "No face detected" | |
# Video Stream Function | |
def generate_frames(): | |
while True: | |
success, frame = cap.read() | |
if not success: | |
break | |
else: | |
skin_result = analyze_skin(frame) | |
cv2.putText(frame, skin_result, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) | |
ret, buffer = cv2.imencode('.jpg', frame) | |
frame = buffer.tobytes() | |
yield (b'--frame\r\n' | |
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') | |
def index(): | |
return render_template('index.html') | |
def video_feed(): | |
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') | |
if __name__ == "__main__": | |
app.run(debug=True) | |