Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,87 @@
|
|
1 |
import cv2
|
|
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
cap.release()
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
|
|
|
1 |
import cv2
|
2 |
+
import dlib
|
3 |
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
from flask import Flask, render_template
|
7 |
+
import requests
|
8 |
+
|
9 |
+
# Initialize Flask app
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
# Facial Recognition Setup
|
13 |
+
detector = dlib.get_frontal_face_detector()
|
14 |
+
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
|
15 |
+
|
16 |
+
# Load Skin Care Model (TensorFlow)
|
17 |
+
skin_care_model = load_model('skin_condition_model.h5')
|
18 |
+
|
19 |
+
# Makeup Image
|
20 |
+
lipstick = cv2.imread("lipstick_image.png", cv2.IMREAD_UNCHANGED)
|
21 |
+
|
22 |
+
def get_weather(location="your_city"):
|
23 |
+
# Fetch weather data from OpenWeatherMap API
|
24 |
+
api_key = "your_api_key"
|
25 |
+
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
26 |
+
response = requests.get(url)
|
27 |
+
weather_data = response.json()
|
28 |
+
return weather_data['weather'][0]['description']
|
29 |
+
|
30 |
+
def suggest_outfit(weather):
|
31 |
+
if "rain" in weather:
|
32 |
+
return "Suggested Outfit: Raincoat and boots."
|
33 |
+
elif "clear" in weather:
|
34 |
+
return "Suggested Outfit: Light jacket and sunglasses."
|
35 |
+
else:
|
36 |
+
return "Suggested Outfit: Comfortable casuals."
|
37 |
+
|
38 |
+
def apply_makeup(face_image, makeup_image):
|
39 |
+
y_offset = 50 # Example offset
|
40 |
+
x_offset = 100 # Example offset
|
|
|
41 |
|
42 |
+
for c in range(0, 3):
|
43 |
+
face_image[y_offset:y_offset+makeup_image.shape[0], x_offset:x_offset+makeup_image.shape[1], c] = \
|
44 |
+
makeup_image[:, :, c] * (makeup_image[:, :, 3] / 255.0) + \
|
45 |
+
face_image[y_offset:y_offset+makeup_image.shape[0], x_offset:x_offset+makeup_image.shape[1], c] * \
|
46 |
+
(1.0 - makeup_image[:, :, 3] / 255.0)
|
47 |
+
return face_image
|
48 |
+
|
49 |
+
def predict_skin_condition(image):
|
50 |
+
image = cv2.resize(image, (224, 224)) # Resize to model's input size
|
51 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
52 |
+
image = image / 255.0 # Normalize the image
|
53 |
|
54 |
+
prediction = skin_care_model.predict(image)
|
55 |
+
if prediction[0] > 0.5:
|
56 |
+
return "Acne detected: Recommended product XYZ"
|
57 |
+
else:
|
58 |
+
return "Skin is clear: Recommended moisturizer ABC"
|
59 |
+
|
60 |
+
@app.route('/')
|
61 |
+
def home():
|
62 |
+
# Capture the video feed from webcam
|
63 |
+
cap = cv2.VideoCapture(0)
|
64 |
+
ret, frame = cap.read()
|
65 |
+
cap.release()
|
66 |
+
|
67 |
+
# Process the face for skin care condition
|
68 |
+
skin_condition = predict_skin_condition(frame)
|
69 |
+
|
70 |
+
# Detect face and apply makeup
|
71 |
+
faces = detector(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY))
|
72 |
+
for face in faces:
|
73 |
+
landmarks = predictor(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), face)
|
74 |
+
frame = apply_makeup(frame, lipstick)
|
75 |
+
|
76 |
+
# Get weather and outfit suggestion
|
77 |
+
weather = get_weather()
|
78 |
+
outfit_suggestion = suggest_outfit(weather)
|
79 |
+
|
80 |
+
# Display results on the web page
|
81 |
+
return render_template('index.html', skin_condition=skin_condition, outfit_suggestion=outfit_suggestion)
|
82 |
+
|
83 |
+
if __name__ == '__main__':
|
84 |
+
app.run(debug=True)
|
85 |
|
86 |
|
87 |
|