Alican commited on
Commit
980c5f9
Β·
1 Parent(s): fa8854b

Add application files

Browse files
Files changed (2) hide show
  1. app.py +506 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import random
4
+ import numpy as np
5
+ import gradio as gr
6
+ try:
7
+ from tensorflow.keras.models import Model
8
+ from tensorflow.keras.applications.vgg19 import VGG19, preprocess_input
9
+ except ImportError:
10
+ try:
11
+ from keras.models import Model
12
+ from keras.applications.vgg19 import VGG19, preprocess_input
13
+ except ImportError:
14
+ # Silently fail if Keras/TensorFlow is not installed, the UI will handle the error.
15
+ pass
16
+
17
+ import matplotlib.pyplot as plt
18
+ from scipy.special import kl_div as scipy_kl_div
19
+ from skimage.metrics import structural_similarity as ssim
20
+ import warnings
21
+
22
+ # --- Global Variables ---
23
+ TASK = "nodules"
24
+ PATH = os.path.join("datasets", TASK, "real")
25
+ images = []
26
+
27
+ perceptual_model = None
28
+ try:
29
+ # Initialize the VGG19 model for the perceptual loss metric.
30
+ vgg = VGG19(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
31
+ vgg.trainable = False
32
+ perceptual_model = Model(inputs=vgg.input, outputs=vgg.get_layer('block5_conv4').output, name="perceptual_model")
33
+ except Exception as e:
34
+ # This will be handled gracefully in the UI if the model fails to load.
35
+ perceptual_model = None
36
+
37
+ # --- Utility Functions ---
38
+
39
+ def safe_normalize_heatmap(heatmap):
40
+ """Safely normalizes a heatmap to a 0-255 range for visualization, handling non-finite values."""
41
+ if heatmap is None or heatmap.size == 0:
42
+ return np.zeros((64, 64), dtype=np.uint8)
43
+
44
+ heatmap = heatmap.astype(np.float32)
45
+
46
+ # Replace non-finite values (NaN, inf) with numerical ones for safe processing.
47
+ if not np.all(np.isfinite(heatmap)):
48
+ min_val_safe = np.nanmin(heatmap[np.isfinite(heatmap)]) if np.any(np.isfinite(heatmap)) else 0
49
+ max_val_safe = np.nanmax(heatmap[np.isfinite(heatmap)]) if np.any(np.isfinite(heatmap)) else 0
50
+ heatmap = np.nan_to_num(heatmap, nan=0.0, posinf=max_val_safe, neginf=min_val_safe)
51
+
52
+ min_val = np.min(heatmap)
53
+ max_val = np.max(heatmap)
54
+ range_val = max_val - min_val
55
+
56
+ # Normalize the heatmap to the 0-255 range.
57
+ normalized_heatmap = np.zeros_like(heatmap, dtype=np.float32)
58
+ if range_val > 1e-9:
59
+ normalized_heatmap = ((heatmap - min_val) / range_val) * 255.0
60
+
61
+ normalized_heatmap = np.clip(normalized_heatmap, 0, 255)
62
+ return np.uint8(normalized_heatmap)
63
+
64
+ # --- Comparison Metric Functions ---
65
+
66
+ def KL_divergence(img_real, img_fake, epsilon=1e-10, block_size=4, sum_channels=False):
67
+ """Calculates the Kullback-Leibler Divergence between two images on a block-by-block basis."""
68
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape:
69
+ return None
70
+
71
+ try:
72
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
73
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
74
+ except cv2.error:
75
+ return None
76
+
77
+ height, width, channels = img_real_rgb.shape
78
+ img_dict = {
79
+ "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)},
80
+ "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)},
81
+ "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)},
82
+ "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}
83
+ }
84
+ channel_keys = ["R", "G", "B"]
85
+ current_block_size = max(1, int(block_size))
86
+ if current_block_size > min(height, width):
87
+ current_block_size = min(height, width)
88
+
89
+ for channel_idx, key in enumerate(channel_keys):
90
+ channel_sum = 0.0
91
+ for i in range(0, height - current_block_size + 1, current_block_size):
92
+ for j in range(0, width - current_block_size + 1, current_block_size):
93
+ block_gt = img_real_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx].flatten() + epsilon
94
+ block_pred = img_fake_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx].flatten() + epsilon
95
+
96
+ # Normalize distributions within the block
97
+ if np.sum(block_gt) > 0 and np.sum(block_pred) > 0:
98
+ block_gt_norm = block_gt / np.sum(block_gt)
99
+ block_pred_norm = block_pred / np.sum(block_pred)
100
+
101
+ kl_values = scipy_kl_div(block_gt_norm, block_pred_norm)
102
+ kl_values = np.nan_to_num(kl_values, nan=0.0, posinf=0.0, neginf=0.0)
103
+ kl_sum_block = np.sum(kl_values)
104
+
105
+ if np.isfinite(kl_sum_block):
106
+ channel_sum += kl_sum_block
107
+ mean_kl_block = kl_sum_block / max(1, current_block_size * current_block_size)
108
+ img_dict[key]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] = mean_kl_block
109
+ if sum_channels:
110
+ img_dict["SUM"]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] += mean_kl_block
111
+ img_dict[key]["SUM"] = channel_sum
112
+
113
+ if sum_channels:
114
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
115
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
116
+
117
+ return img_dict
118
+
119
+ def L1_loss(img_real, img_fake, epsilon=1e-10, block_size=4, sum_channels=False):
120
+ """Calculates the L1 (Mean Absolute Error) loss between two images."""
121
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape: return None
122
+ try:
123
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
124
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
125
+ except cv2.error: return None
126
+
127
+ height, width, channels = img_real_rgb.shape
128
+ img_dict = { "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)} }
129
+ channel_keys = ["R", "G", "B"]
130
+ current_block_size = max(1, int(block_size))
131
+ if current_block_size > min(height, width): current_block_size = min(height, width)
132
+
133
+ for channel_idx, key in enumerate(channel_keys):
134
+ channel_sum = 0.0
135
+ for i in range(0, height - current_block_size + 1, current_block_size):
136
+ for j in range(0, width - current_block_size + 1, current_block_size):
137
+ block_pred = img_fake_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
138
+ block_gt = img_real_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
139
+ result_block = np.abs(block_pred - block_gt)
140
+ sum_result_block = np.sum(result_block)
141
+ channel_sum += sum_result_block
142
+ mean_l1_block = sum_result_block / max(1, current_block_size * current_block_size)
143
+ img_dict[key]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] = mean_l1_block
144
+ if sum_channels: img_dict["SUM"]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] += mean_l1_block
145
+ img_dict[key]["SUM"] = channel_sum
146
+
147
+ if sum_channels:
148
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
149
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
150
+ return img_dict
151
+
152
+ def MSE_loss(img_real, img_fake, epsilon=1e-10, block_size=4, sum_channels=False):
153
+ """Calculates the L2 (Mean Squared Error) loss between two images."""
154
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape: return None
155
+ try:
156
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
157
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
158
+ except cv2.error: return None
159
+
160
+ height, width, channels = img_real_rgb.shape
161
+ img_dict = { "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)} }
162
+ channel_keys = ["R", "G", "B"]
163
+ current_block_size = max(1, int(block_size))
164
+ if current_block_size > min(height, width): current_block_size = min(height, width)
165
+
166
+ for channel_idx, key in enumerate(channel_keys):
167
+ channel_sum = 0.0
168
+ for i in range(0, height - current_block_size + 1, current_block_size):
169
+ for j in range(0, width - current_block_size + 1, current_block_size):
170
+ block_pred = img_fake_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
171
+ block_gt = img_real_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
172
+ result_block = np.square(block_pred - block_gt)
173
+ sum_result_block = np.sum(result_block)
174
+ channel_sum += sum_result_block
175
+ mean_mse_block = sum_result_block / max(1, current_block_size * current_block_size)
176
+ img_dict[key]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] = mean_mse_block
177
+ if sum_channels: img_dict["SUM"]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] += mean_mse_block
178
+ img_dict[key]["SUM"] = channel_sum
179
+
180
+ if sum_channels:
181
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
182
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
183
+ return img_dict
184
+
185
+ def SSIM_loss(img_real, img_fake, block_size=7, sum_channels=False):
186
+ """Calculates the Structural Similarity Index Measure (SSIM) loss between two images."""
187
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape: return None
188
+ try:
189
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB)
190
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB)
191
+ except cv2.error: return None
192
+
193
+ height, width, channels = img_real_rgb.shape
194
+ img_dict = { "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)} }
195
+ channel_keys = ["R", "G", "B"]
196
+
197
+ for channel_idx, key in enumerate(channel_keys):
198
+ win_size = int(block_size)
199
+ if win_size % 2 == 0: win_size += 1
200
+ win_size = max(3, min(win_size, height, width))
201
+
202
+ try:
203
+ _, ssim_map = ssim(img_real_rgb[:, :, channel_idx], img_fake_rgb[:, :, channel_idx], win_size=win_size, data_range=255, full=True, gaussian_weights=True)
204
+ ssim_loss_map = np.maximum(0.0, 1.0 - ssim_map)
205
+ img_dict[key]["SUM"] = np.sum(ssim_loss_map)
206
+ img_dict[key]["HEATMAP"] = ssim_loss_map
207
+ if sum_channels: img_dict["SUM"]["HEATMAP"] += ssim_loss_map
208
+ except ValueError:
209
+ img_dict[key]["SUM"] = 0.0
210
+ img_dict[key]["HEATMAP"] = np.zeros((height, width), dtype=np.float32)
211
+
212
+ if sum_channels:
213
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
214
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
215
+ return img_dict
216
+
217
+ def cosine_similarity_loss(img_real, img_fake, epsilon=1e-10, block_size=4, sum_channels=False):
218
+ """Calculates the Cosine Similarity loss between two images on a block-by-block basis."""
219
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape: return None
220
+ try:
221
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
222
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
223
+ except cv2.error: return None
224
+
225
+ height, width, channels = img_real_rgb.shape
226
+ img_dict = { "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)} }
227
+ channel_keys = ["R", "G", "B"]
228
+ current_block_size = max(1, int(block_size))
229
+ if current_block_size > min(height, width): current_block_size = min(height, width)
230
+
231
+ for channel_idx, key in enumerate(channel_keys):
232
+ channel_sum = 0.0
233
+ for i in range(0, height - current_block_size + 1, current_block_size):
234
+ for j in range(0, width - current_block_size + 1, current_block_size):
235
+ block_pred = img_fake_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx].flatten()
236
+ block_gt = img_real_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx].flatten()
237
+
238
+ dot_product = np.dot(block_pred, block_gt)
239
+ norm_pred = np.linalg.norm(block_pred)
240
+ norm_gt = np.linalg.norm(block_gt)
241
+
242
+ cosine_sim = 0.0
243
+ if norm_pred * norm_gt > epsilon:
244
+ cosine_sim = dot_product / (norm_pred * norm_gt)
245
+ elif norm_pred < epsilon and norm_gt < epsilon:
246
+ cosine_sim = 1.0 # If both vectors are near-zero, they are identical.
247
+
248
+ result_block = 1.0 - np.clip(cosine_sim, -1.0, 1.0)
249
+ channel_sum += result_block
250
+ img_dict[key]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] = result_block
251
+ if sum_channels: img_dict["SUM"]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] += result_block
252
+ img_dict[key]["SUM"] = channel_sum
253
+
254
+ if sum_channels:
255
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
256
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
257
+ return img_dict
258
+
259
+ def TV_loss(img_real, img_fake, epsilon=1e-10, block_size=4, sum_channels=False):
260
+ """Calculates the Total Variation (TV) loss between two images."""
261
+ if img_real is None or img_fake is None or img_real.shape != img_fake.shape: return None
262
+ try:
263
+ img_real_rgb = cv2.cvtColor(img_real, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
264
+ img_fake_rgb = cv2.cvtColor(img_fake, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
265
+ except cv2.error: return None
266
+
267
+ height, width, channels = img_real_rgb.shape
268
+ img_dict = { "R": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "G": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "B": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)}, "SUM": {"SUM": 0.0, "HEATMAP": np.zeros((height, width), dtype=np.float32)} }
269
+ channel_keys = ["R", "G", "B"]
270
+ current_block_size = max(2, int(block_size)) # TV needs at least 2x2 blocks
271
+ if current_block_size > min(height, width): current_block_size = min(height, width)
272
+
273
+ for channel_idx, key in enumerate(channel_keys):
274
+ channel_sum = 0.0
275
+ for i in range(0, height - current_block_size + 1, current_block_size):
276
+ for j in range(0, width - current_block_size + 1, current_block_size):
277
+ block_pred = img_fake_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
278
+ block_gt = img_real_rgb[i:i+current_block_size, j:j+current_block_size, channel_idx]
279
+
280
+ tv_pred = np.sum(np.abs(block_pred[:, 1:] - block_pred[:, :-1])) + np.sum(np.abs(block_pred[1:, :] - block_pred[:-1, :]))
281
+ tv_gt = np.sum(np.abs(block_gt[:, 1:] - block_gt[:, :-1])) + np.sum(np.abs(block_gt[1:, :] - block_gt[:-1, :]))
282
+ result_block = np.abs(tv_pred - tv_gt)
283
+
284
+ channel_sum += result_block
285
+ img_dict[key]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] = result_block
286
+ if sum_channels: img_dict["SUM"]["HEATMAP"][i:i+current_block_size, j:j+current_block_size] += result_block
287
+ img_dict[key]["SUM"] = channel_sum
288
+
289
+ if sum_channels:
290
+ img_dict["SUM"]["SUM"] = img_dict["R"]["SUM"] + img_dict["G"]["SUM"] + img_dict["B"]["SUM"]
291
+ img_dict["SUM"]["HEATMAP"] /= max(1, channels)
292
+ return img_dict
293
+
294
+ def perceptual_loss(img_real, img_fake, model, block_size=4):
295
+ """Calculates the perceptual loss using a pre-trained VGG19 model."""
296
+ if img_real is None or img_fake is None or model is None or img_real.shape != img_fake.shape:
297
+ return None
298
+
299
+ original_height, original_width, _ = img_real.shape
300
+ try:
301
+ # Determine the target input size from the model
302
+ target_size = (model.input_shape[1], model.input_shape[2])
303
+ cv2_target_size = (target_size[1], target_size[0])
304
+
305
+ # Resize, convert to RGB, and preprocess images for the model
306
+ img_real_resized = cv2.resize(img_real, cv2_target_size, interpolation=cv2.INTER_AREA)
307
+ img_fake_resized = cv2.resize(img_fake, cv2_target_size, interpolation=cv2.INTER_AREA)
308
+ img_real_processed = preprocess_input(np.expand_dims(cv2.cvtColor(img_real_resized, cv2.COLOR_BGR2RGB), axis=0))
309
+ img_fake_processed = preprocess_input(np.expand_dims(cv2.cvtColor(img_fake_resized, cv2.COLOR_BGR2RGB), axis=0))
310
+ except Exception:
311
+ return None
312
+
313
+ try:
314
+ # Get feature maps from the model
315
+ img_real_vgg = model.predict(img_real_processed)
316
+ img_fake_vgg = model.predict(img_fake_processed)
317
+ except Exception:
318
+ return None
319
+
320
+ # Calculate MSE between feature maps
321
+ feature_mse = np.square(img_real_vgg - img_fake_vgg)
322
+ total_loss = np.sum(feature_mse)
323
+ heatmap_features = np.mean(feature_mse[0, :, :, :], axis=-1)
324
+
325
+ # Resize heatmap back to original image dimensions
326
+ heatmap_original_size = cv2.resize(heatmap_features, (original_width, original_height), interpolation=cv2.INTER_LINEAR)
327
+
328
+ return {"SUM": {"SUM": total_loss, "HEATMAP": heatmap_original_size.astype(np.float32)}}
329
+
330
+ # --- Gradio Core Logic ---
331
+
332
+ def gather_images(task):
333
+ """Loads a random pair of real and fake images from the selected task directory."""
334
+ global TASK, PATH, images
335
+
336
+ new_path = os.path.join("datasets", task, "real")
337
+ if TASK != task or not images:
338
+ PATH = new_path
339
+ TASK = task
340
+ images = []
341
+ if not os.path.isdir(PATH):
342
+ error_msg = f"Error: Directory for task '{task}' not found: {PATH}"
343
+ placeholder = np.zeros((256, 256, 3), dtype=np.uint8)
344
+ return placeholder, placeholder, error_msg
345
+ try:
346
+ valid_extensions = ('.png', '.jpg', '.jpeg', '.bmp', '.tif', '.tiff')
347
+ images = [os.path.join(PATH, f) for f in os.listdir(PATH) if f.lower().endswith(valid_extensions)]
348
+ if not images:
349
+ error_msg = f"Error: No valid image files found in: {PATH}"
350
+ placeholder = np.zeros((256, 256, 3), dtype=np.uint8)
351
+ return placeholder, placeholder, error_msg
352
+ except Exception as e:
353
+ error_msg = f"Error reading directory {PATH}: {e}"
354
+ placeholder = np.zeros((256, 256, 3), dtype=np.uint8)
355
+ return placeholder, placeholder, error_msg
356
+
357
+ if not images:
358
+ error_msg = f"Error: No images available for task '{task}'."
359
+ placeholder = np.zeros((256, 256, 3), dtype=np.uint8)
360
+ return placeholder, placeholder, error_msg
361
+
362
+ try:
363
+ real_img_path = random.choice(images)
364
+ img_filename = os.path.basename(real_img_path)
365
+ fake_img_path = os.path.join("datasets", task, "fake", img_filename)
366
+
367
+ real_img = cv2.imread(real_img_path)
368
+ fake_img = cv2.imread(fake_img_path)
369
+
370
+ placeholder_shape = (256, 256, 3)
371
+ if real_img is None:
372
+ return np.zeros(placeholder_shape, dtype=np.uint8), fake_img if fake_img is not None else np.zeros(placeholder_shape, dtype=np.uint8), f"Error: Failed to load real image: {real_img_path}"
373
+ if fake_img is None:
374
+ return real_img, np.zeros(real_img.shape, dtype=np.uint8), f"Error: Failed to load fake image: {fake_img_path}"
375
+
376
+ # Ensure images have the same dimensions for comparison
377
+ if real_img.shape != fake_img.shape:
378
+ target_dims = (real_img.shape[1], real_img.shape[0])
379
+ fake_img = cv2.resize(fake_img, target_dims, interpolation=cv2.INTER_AREA)
380
+
381
+ return real_img, fake_img, f"Sample pair for '{task}' loaded successfully."
382
+ except Exception as e:
383
+ error_msg = f"An unexpected error occurred during image loading: {e}"
384
+ placeholder = np.zeros((256, 256, 3), dtype=np.uint8)
385
+ return placeholder, placeholder, error_msg
386
+
387
+ def run_comparison(real, fake, measurement, block_size_val):
388
+ """Runs the selected comparison and returns the heatmap and a status message."""
389
+ placeholder_heatmap = np.zeros((64, 64, 3), dtype=np.uint8)
390
+ if real is None or fake is None or not isinstance(real, np.ndarray) or not isinstance(fake, np.ndarray):
391
+ return placeholder_heatmap, "Error: Input image(s) missing or invalid. Please get a new sample pair."
392
+
393
+ if real.shape != fake.shape:
394
+ return placeholder_heatmap, f"Error: Input images have different shapes ({real.shape} vs {fake.shape})."
395
+
396
+ result = None
397
+ block_size_int = int(block_size_val)
398
+
399
+ try:
400
+ if measurement == "Kullback-Leibler Divergence": result = KL_divergence(real, fake, block_size=block_size_int, sum_channels=True)
401
+ elif measurement == "L1-Loss": result = L1_loss(real, fake, block_size=block_size_int, sum_channels=True)
402
+ elif measurement == "MSE": result = MSE_loss(real, fake, block_size=block_size_int, sum_channels=True)
403
+ elif measurement == "SSIM": result = SSIM_loss(real, fake, block_size=block_size_int, sum_channels=True)
404
+ elif measurement == "Cosine Similarity": result = cosine_similarity_loss(real, fake, block_size=block_size_int, sum_channels=True)
405
+ elif measurement == "TV": result = TV_loss(real, fake, block_size=block_size_int, sum_channels=True)
406
+ elif measurement == "Perceptual":
407
+ if perceptual_model is None:
408
+ return placeholder_heatmap, "Error: Perceptual model not loaded. Cannot calculate Perceptual loss."
409
+ result = perceptual_loss(real, fake, model=perceptual_model, block_size=block_size_int)
410
+ else:
411
+ return placeholder_heatmap, f"Error: Unknown measurement '{measurement}'."
412
+ except Exception as e:
413
+ return placeholder_heatmap, f"Error during {measurement} calculation: {e}"
414
+
415
+ if result is None or "SUM" not in result or "HEATMAP" not in result["SUM"]:
416
+ return placeholder_heatmap, f"{measurement} calculation failed or returned an invalid result structure."
417
+
418
+ heatmap_raw = result["SUM"]["HEATMAP"]
419
+ if not isinstance(heatmap_raw, np.ndarray) or heatmap_raw.size == 0:
420
+ return placeholder_heatmap, f"Generated heatmap is invalid or empty for {measurement}."
421
+
422
+ try:
423
+ heatmap_normalized = safe_normalize_heatmap(heatmap_raw)
424
+ heatmap_color = cv2.applyColorMap(heatmap_normalized, cv2.COLORMAP_HOT)
425
+ heatmap_rgb = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
426
+ except Exception as e:
427
+ return placeholder_heatmap, f"Error during heatmap coloring: {e}"
428
+
429
+ status_msg = f"{measurement} comparison successful."
430
+ return heatmap_rgb, status_msg
431
+
432
+ # --- Gradio UI Definition ---
433
+
434
+ theme = gr.themes.Soft(primary_hue="blue", secondary_hue="orange")
435
+
436
+ with gr.Blocks(theme=theme, css=".gradio-container { max-width: 1200px !important; margin: auto; }") as demo:
437
+ gr.Markdown("# GAN vs Ground Truth Image Comparison")
438
+ gr.Markdown("Select a dataset task, load a random sample pair (Real vs Fake), choose a comparison metric and parameters, then run the analysis to see the difference heatmap.")
439
+
440
+ with gr.Row():
441
+ status_message = gr.Textbox(label="Status / Errors", lines=2, interactive=False, show_copy_button=True, scale=1)
442
+
443
+ with gr.Row(equal_height=False):
444
+ with gr.Column(scale=2, min_width=300):
445
+ real_img_display = gr.Image(type="numpy", label="Real Image (Ground Truth)", height=350, interactive=False)
446
+ task_dropdown = gr.Dropdown(
447
+ ["nodules", "facades"], value=TASK,
448
+ info="Select the dataset task (must match directory name)",
449
+ label="Dataset Task"
450
+ )
451
+ sample_button = gr.Button("πŸ”„ Get New Sample Pair", variant="secondary")
452
+
453
+ with gr.Column(scale=2, min_width=300):
454
+ fake_img_display = gr.Image(type="numpy", label="Fake Image (Generated by GAN)", height=350, interactive=False)
455
+ measurement_dropdown = gr.Dropdown(
456
+ ["Kullback-Leibler Divergence", "L1-Loss", "MSE", "SSIM", "Cosine Similarity", "TV", "Perceptual"],
457
+ value="Kullback-Leibler Divergence",
458
+ info="Select the comparison metric",
459
+ label="Comparison Metric"
460
+ )
461
+ block_size_slider = gr.Slider(
462
+ minimum=2, maximum=64, value=8, step=2,
463
+ info="Size of the block/window for comparison (e.g., 8x8). Affects granularity. Note: SSIM uses this as 'win_size', Perceptual ignores it.",
464
+ label="Block/Window Size"
465
+ )
466
+ run_button = gr.Button("πŸ“Š Run Comparison", variant="primary")
467
+
468
+ with gr.Column(scale=2, min_width=300):
469
+ heatmap_display = gr.Image(type="numpy", label="Comparison Heatmap (Difference)", height=350, interactive=False)
470
+
471
+ # --- Event Handlers ---
472
+
473
+ # When the "Get New Sample Pair" button is clicked
474
+ sample_button.click(
475
+ fn=gather_images,
476
+ inputs=[task_dropdown],
477
+ outputs=[real_img_display, fake_img_display, status_message]
478
+ )
479
+
480
+ # When the "Run Comparison" button is clicked
481
+ run_button.click(
482
+ fn=run_comparison,
483
+ inputs=[real_img_display, fake_img_display, measurement_dropdown, block_size_slider],
484
+ outputs=[heatmap_display, status_message] # The status message box now receives the result string
485
+ )
486
+
487
+ if __name__ == "__main__":
488
+ print("-------------------------------------------------------------")
489
+ print("Verifying VGG19 model status...")
490
+ if perceptual_model is None:
491
+ print("WARNING: VGG19 model failed to load. 'Perceptual' metric will be unavailable.")
492
+ else:
493
+ print("VGG19 model loaded successfully.")
494
+ print("-------------------------------------------------------------")
495
+ print(f"Checking initial dataset path: {PATH}")
496
+ if not os.path.isdir(PATH):
497
+ print(f"WARNING: Initial dataset path not found: {PATH}")
498
+ print(f" Please ensure the directory '{os.path.join('datasets', TASK, 'real')}' exists.")
499
+ else:
500
+ print("Initial dataset path seems valid.")
501
+ print("-------------------------------------------------------------")
502
+ print("Launching Gradio App...")
503
+ print("Access the app in your browser, usually at: http://127.0.0.1:7860")
504
+ print("-------------------------------------------------------------")
505
+
506
+ demo.launch(share=False, debug=False)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ numpy
2
+ opencv-python
3
+ tensorflow
4
+ matplotlib
5
+ scipy
6
+ scikit-image
7
+ gradio