Spaces:
Running
Lens Migration (#29)
Browse files- added migration utils (e49cdfa4c2d778941ea6cf7034fba5d07da3bbf3)
- lens migration script updated (dba1d6efbb66f4f4179f8346d82ecc54352ec061)
- added more logging to migration process (b9dc12272996eacecb86c5e26b05bb590696d726)
- fixed tqdm import (af698699c828c7fd15d84fcb29bc74fe74393b17)
- made lp tolorance in fuzzing slightly looser (19bac2b76ffba0fdb8321df557ff8fc09311f67a)
- gpt2 migrated (7667318c2700d6b1b36c930da34375cab1b5fedd)
- pythia-160m-deduped-v0 migrated (7be85cfe412be0e524fe43cac2fb1aee2fdbe4dc)
- gpt2-large migrated (2fb9929f5a66f0ee06481efa1f7ead7ede1dc4e4)
- gpt2-xl migrated (909d1269f428b3ffee95b8787e85105175321157)
- opt-125m migrated (eb6b4f31266289e15e067da975e076c8f1042f82)
- opt-6.7b migrated (6caa2f8be45a2bc5827adbbc59a0814b2e871e06)
- reduced atol (20b0e5b729d5c05b924a171a6534026bc3e355e8)
- skiping pythia 1.4b for now and decreaing atol (ab69474f2ad8839f0a9abaed422b4b2384153f89)
- pythia-1b-deduped-v0 migrated (e8403e5a615ccb20dbcbc7b8fe300dbdde820f8a)
- pythia-6.9b-deduped-v0 migrated (70b412332829c9729e39a830e2b47c9a4b86b791)
- opt-1.3b migrated (e01dcb55b59d999c44571516fa0a9989e1364838)
- pythia-410m-deduped-v0 migrated (d11af574430b3113c77831bea3f631ad24a3a0a2)
- pythia-12b-deduped-v0 migrated (381a4f2370f767bbede8706505764d3961fb3b84)
- gpt-neox-20b migrated (62c1cda78d538a94b0f022008d7a21058248f245)
- reduced atol to migrate pythia 1.4b deduped v0 (71df1afeec06b4749040e195cfbec7241e71345e)
- pythia-1.4b-deduped-v0 migrated (578983926f7b9916d7637cf77c7fb9185645c610)
- pythia-70m-deduped-v0 migrated (9a43b714f2a5370f5b85418487205997d9ba4a83)
- lens/gpt-neox-20b/config.json +1 -1
- lens/gpt-neox-20b/params.pt +2 -2
- lens/gpt2-large/config.json +1 -7
- lens/gpt2-large/params.pt +2 -2
- lens/gpt2-xl/config.json +1 -7
- lens/gpt2-xl/params.pt +2 -2
- lens/gpt2/config.json +1 -7
- lens/gpt2/params.pt +2 -2
- lens/opt-1.3b/config.json +1 -1
- lens/opt-1.3b/params.pt +2 -2
- lens/opt-125m/config.json +1 -1
- lens/opt-125m/params.pt +2 -2
- lens/opt-6.7b/config.json +1 -1
- lens/opt-6.7b/params.pt +2 -2
- lens/pythia-1.4b-deduped-v0/config.json +1 -1
- lens/pythia-1.4b-deduped-v0/params.pt +2 -2
- lens/pythia-12b-deduped-v0/config.json +1 -1
- lens/pythia-12b-deduped-v0/params.pt +2 -2
- lens/pythia-160m-deduped-v0/config.json +1 -1
- lens/pythia-160m-deduped-v0/params.pt +2 -2
- lens/pythia-1b-deduped-v0/config.json +1 -1
- lens/pythia-1b-deduped-v0/params.pt +2 -2
- lens/pythia-410m-deduped-v0/config.json +1 -1
- lens/pythia-410m-deduped-v0/params.pt +2 -2
- lens/pythia-6.9b-deduped-v0/config.json +1 -1
- lens/pythia-6.9b-deduped-v0/params.pt +2 -2
- lens/pythia-70m-deduped-v0/config.json +1 -1
- lens/pythia-70m-deduped-v0/params.pt +2 -2
- lens_migration.py +384 -0
- migrate.sh +12 -0
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/gpt-neox-20b", "d_model": 6144, "num_hidden_layers": 44, "bias": true, "base_model_revision": "4e49eadb5d14bd22f314ec3f45b69a87b88c7691", "unemebd_hash": "323d4c731c33556e143503e3be913c109ead330080b4065552be97000c19ed67", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3c0e5911cbdabd33e5a59112eefb4f234a487fac77f830be7fc238ffb72e776
|
3 |
+
size 6644881483
|
@@ -1,7 +1 @@
|
|
1 |
-
{
|
2 |
-
"include_input": true,
|
3 |
-
"num_layers": 36,
|
4 |
-
"vocab_size": 50257,
|
5 |
-
"bias": true,
|
6 |
-
"d_model": 1280
|
7 |
-
}
|
|
|
1 |
+
{"base_model_name_or_path": "gpt2-large", "d_model": 1280, "num_hidden_layers": 36, "bias": true, "base_model_revision": "212095d5832abbf9926672e1c1e8d14312a3be20", "unemebd_hash": "9b7da774c0a326716dca888539370ddff25804795949e5ace65ef9f761f47397", "lens_type": "linear_tuned_lens"}
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291a85a7f524378221e2af0814c2a98c68f740c38993a0b62863f50adb3231db
|
3 |
+
size 236130371
|
@@ -1,7 +1 @@
|
|
1 |
-
{
|
2 |
-
"bias": true,
|
3 |
-
"include_input": true,
|
4 |
-
"d_model": 1600,
|
5 |
-
"num_layers": 48,
|
6 |
-
"vocab_size": 50257
|
7 |
-
}
|
|
|
1 |
+
{"base_model_name_or_path": "gpt2-xl", "d_model": 1600, "num_hidden_layers": 48, "bias": true, "base_model_revision": "33cdb5c0db5423c1879b1b9f16c352988e8754a8", "unemebd_hash": "70bf58a8cf7964b39530e30fdaebb89de39489546244437b1ed56fb81bd4c746", "lens_type": "linear_tuned_lens"}
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c9b8eaf307a87965188d2311ee4d90d3c7868611e20aab263bc8e30b51320b6
|
3 |
+
size 491849251
|
@@ -1,7 +1 @@
|
|
1 |
-
{
|
2 |
-
"bias": true,
|
3 |
-
"include_input": true,
|
4 |
-
"d_model": 768,
|
5 |
-
"num_layers": 12,
|
6 |
-
"vocab_size": 50257
|
7 |
-
}
|
|
|
1 |
+
{"base_model_name_or_path": "gpt2", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "e7da7f221d5bf496a48136c0cd264e630fe9fcc8", "unemebd_hash": "608e50247f57691c90453601e854f2287141e4db9cba436af0b0186003e2daae", "lens_type": "linear_tuned_lens"}
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e0494dcf4a56a77b73b421820941ea948ffae0c6a0391d88c9cb10b48bc19c8
|
3 |
+
size 28353795
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "facebook/opt-1.3b", "d_model": 2048, "num_hidden_layers": 24, "bias": true, "base_model_revision": "8c7b10754972749675d22364c25c428b29face51", "unemebd_hash": "2db68eed8b11e46e8a969c14b1ce9269edec3154b19cdd18970dcfc405533070", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b5620752d01fcca26f5b7c36ec2b741974b570adfb64bffbd901cdc01dc9df9
|
3 |
+
size 402860707
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "facebook/opt-125m", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "3d2b5f275bdf882b8775f902e1bfdb790e2cfc32", "unemebd_hash": "d54b1bdd7e16d4dab3bb9f1856c1146310a3ce228e667640843455a3956dc9b4", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f61d7716618783244f2e7f5d26022df092b80695e9620ccb02c5ffb70f9b1405
|
3 |
+
size 28353795
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "facebook/opt-6.7b", "d_model": 4096, "num_hidden_layers": 32, "bias": true, "base_model_revision": "a45aa65bbeb77c1558bc99bedc6779195462dab0", "unemebd_hash": "35676bc5e38da5b53231218f1c829b91bc89de7f65fec1b2fe885b9c42f93dcb", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9580fbf6e967c1be832ef415f3f74c0f6ee111637fba253dc5a75216dc305ebb
|
3 |
+
size 2148022563
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-1.4b-deduped-v0", "d_model": 2048, "num_hidden_layers": 24, "bias": true, "base_model_revision": "b541e01fddacd3038799915cf8ff5b52e835a6c4", "unemebd_hash": "da1780eccec1a4ff12e43464da6cbef33b9ffde398a3056ac9648dd53229943e", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:713d414666c3a99f4e08cbfb700e40ba551989a2d99bba9e649e7b568f6e3974
|
3 |
+
size 402860707
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-12b-deduped-v0", "d_model": 5120, "num_hidden_layers": 36, "bias": true, "base_model_revision": "b497662035bf3c80b4f6a1ddfe09bc27763e843a", "unemebd_hash": "a161c0d1dd8793ca1683b0422f3b6573178ea7ebf26cf207e40cc56507aa0526", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9e34c28c900b7230afe7ae1dc99b58b82c22b3265de2cbf939e3946cdcec126
|
3 |
+
size 3775627331
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-160m-deduped-v0", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "7e57cc978f5da949f028f36b5baf8f5d6c3281b1", "unemebd_hash": "922e5aee39d4874fb5c1163087858333808367bf9b02c4a1ae4a06828af2f58a", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9644fe7196ae4ab63ce2ce1c7a22f63ae548021a27bac57c4c1cdd200d982cf8
|
3 |
+
size 28353795
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-1b-deduped-v0", "d_model": 2048, "num_hidden_layers": 16, "bias": true, "base_model_revision": "021f79f50ff000ae1c159e22402ffec62284664d", "unemebd_hash": "b97dd35a220ea2694e263be05d2f19129fc5725c1d201d83eae5a78eeebcf527", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e10ed1a0b10251aaf1b7c542f14ad2c7a850103dfdffcd9da3d21e107d779eeb
|
3 |
+
size 268573731
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-410m-deduped-v0", "d_model": 1024, "num_hidden_layers": 24, "bias": true, "base_model_revision": "3538d3569a7e313e445ad6401c92c6e16777a2da", "unemebd_hash": "281af3dac813ef2f2eb5a1a359c402627bc9cf104710d00f891f767b17687758", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:257a17d052d6bda84f338b1aa22ded8c17c401e1299b64cdab521178708ee7ac
|
3 |
+
size 100772515
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-6.9b-deduped-v0", "d_model": 4096, "num_hidden_layers": 32, "bias": true, "base_model_revision": "cbd53efc2e56056e3bd0235277b5d0b668a6dfbb", "unemebd_hash": "5a037e6f7542abd5e0817e46c7e9127c18164ac34d06051b5faac190103f6951", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c99da7167d4a45a71c2f04c2db4d716a7a63f27406cb8948c9cb9f6c052b91c
|
3 |
+
size 2148022563
|
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"base_model_name_or_path": "EleutherAI/pythia-70m-deduped-v0", "d_model": 512, "num_hidden_layers": 6, "bias": true, "base_model_revision": "ec30f7539a604fcb0b7fbba04fb1eb0110735d29", "unemebd_hash": "6c42572c654f76afb6ad30aafac2644308d5e3e708ee54051fa9d4e043918f3a", "lens_type": "linear_tuned_lens"}
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbfc06e4d8733b1fccd5e1bb9cabd845072abfc8b92902ae1bbcbb2763fbc014
|
3 |
+
size 6306739
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from huggingface_hub import model_info
|
3 |
+
import argparse
|
4 |
+
from copy import deepcopy
|
5 |
+
import inspect
|
6 |
+
from logging import warn
|
7 |
+
from pathlib import Path
|
8 |
+
from tqdm import tqdm
|
9 |
+
import json
|
10 |
+
|
11 |
+
from tuned_lens.model_surgery import get_final_norm, get_transformer_layers
|
12 |
+
from tuned_lens.load_artifacts import load_lens_artifacts
|
13 |
+
from tuned_lens.nn import TunedLens
|
14 |
+
from transformers.models.bloom.modeling_bloom import BloomBlock
|
15 |
+
from transformers import PreTrainedModel, AutoModelForCausalLM
|
16 |
+
from typing import Optional, Generator, Union
|
17 |
+
import torch as th
|
18 |
+
|
19 |
+
from tuned_lens.stats.distance import js_divergence
|
20 |
+
|
21 |
+
|
22 |
+
def instantiate_layer(model_config, layer_idx: int, model_type: str) -> th.nn.Module:
|
23 |
+
if model_type == "bloom":
|
24 |
+
from transformers.models.bloom.modeling_bloom import BloomBlock
|
25 |
+
|
26 |
+
return _BloomBlockWrapper(BloomBlock(model_config)) # type: ignore[arg-type]
|
27 |
+
if model_type == "gpt_neo":
|
28 |
+
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoBlock
|
29 |
+
|
30 |
+
return GPTNeoBlock(model_config, layer_idx)
|
31 |
+
if model_type == "gpt_neox":
|
32 |
+
from transformers.models.gpt_neox.modeling_gpt_neox import (
|
33 |
+
GPTNeoXLayer,
|
34 |
+
)
|
35 |
+
|
36 |
+
return GPTNeoXLayer(model_config) # type: ignore[arg-type]
|
37 |
+
if model_type == "gpt2":
|
38 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Block
|
39 |
+
|
40 |
+
return GPT2Block(model_config, layer_idx) # type: ignore[arg-type]
|
41 |
+
if model_type == "opt":
|
42 |
+
from transformers.models.opt.modeling_opt import OPTDecoderLayer
|
43 |
+
|
44 |
+
return OPTDecoderLayer(model_config) # type: ignore[arg-type]
|
45 |
+
else:
|
46 |
+
raise ValueError(f"Unknown model type '{model_type}'")
|
47 |
+
|
48 |
+
|
49 |
+
def maybe_wrap(layer: th.nn.Module) -> th.nn.Module:
|
50 |
+
return _BloomBlockWrapper(layer) if isinstance(layer, BloomBlock) else layer
|
51 |
+
|
52 |
+
|
53 |
+
# Very annoying that we have to do this. See https://bit.ly/3XSQ7W6 for context on
|
54 |
+
# what we're doing here.
|
55 |
+
class _BloomBlockWrapper(th.nn.Module):
|
56 |
+
def __init__(self, block: BloomBlock):
|
57 |
+
super().__init__()
|
58 |
+
self.block = block
|
59 |
+
|
60 |
+
def forward(self, x: th.Tensor) -> th.Tensor:
|
61 |
+
from transformers.models.bloom.modeling_bloom import (
|
62 |
+
BloomModel,
|
63 |
+
build_alibi_tensor,
|
64 |
+
)
|
65 |
+
|
66 |
+
batch_size, seq_len, _ = x.shape
|
67 |
+
dummy_mask = x.new_ones([batch_size, seq_len])
|
68 |
+
|
69 |
+
# Causal mask isn't created inside the block itself, so we have to do it here.
|
70 |
+
# Weirdly _prepare_attn_mask doesn't depend on `self` at all but is still an
|
71 |
+
# instance method for some reason, so we pass `None` as the first argument.
|
72 |
+
causal_mask = BloomModel._prepare_attn_mask(
|
73 |
+
None, dummy_mask, (batch_size, seq_len), 0 # type: ignore[arg-type]
|
74 |
+
)
|
75 |
+
alibi = build_alibi_tensor(dummy_mask, self.block.num_heads, x.dtype)
|
76 |
+
h, *_ = self.block(x, alibi, causal_mask)
|
77 |
+
return h
|
78 |
+
|
79 |
+
|
80 |
+
class TunedLensOld(th.nn.Module):
|
81 |
+
"""A tuned lens for decoding hidden states into logits."""
|
82 |
+
|
83 |
+
layer_norm: th.nn.LayerNorm
|
84 |
+
unembedding: th.nn.Linear
|
85 |
+
extra_layers: th.nn.Sequential
|
86 |
+
layer_translators: th.nn.ModuleList
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
model: Optional[PreTrainedModel] = None,
|
91 |
+
*,
|
92 |
+
bias: bool = True,
|
93 |
+
extra_layers: int = 0,
|
94 |
+
include_input: bool = True,
|
95 |
+
reuse_unembedding: bool = True,
|
96 |
+
# Used when saving and loading the lens
|
97 |
+
model_config: Optional[dict] = None,
|
98 |
+
d_model: Optional[int] = None,
|
99 |
+
num_layers: Optional[int] = None,
|
100 |
+
vocab_size: Optional[int] = None,
|
101 |
+
):
|
102 |
+
"""Create a TunedLensOld.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
model : A pertained model from the transformers library you wish to inspect.
|
106 |
+
bias : Whether to include a bias term in the translator layers.
|
107 |
+
extra_layers : The number of extra layers to apply to the hidden states
|
108 |
+
before decoding into logits.
|
109 |
+
|
110 |
+
include_input : Whether to include a lens that decodes the word embeddings.
|
111 |
+
reuse_unembedding : Weather to reuse the unembedding matrix from the model.
|
112 |
+
model_config : The config of the model. Used for saving and loading.
|
113 |
+
d_model : The models hidden size. Used for saving and loading.
|
114 |
+
num_layers : The number of layers in the model. Used for saving and loading.
|
115 |
+
vocab_size : The size of the vocabulary. Used for saving and loading.
|
116 |
+
|
117 |
+
Raises:
|
118 |
+
ValueError: if neither a model or d_model, num_layers, and vocab_size,
|
119 |
+
are provided.
|
120 |
+
"""
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.extra_layers = th.nn.Sequential()
|
124 |
+
|
125 |
+
if (
|
126 |
+
model
|
127 |
+
is None
|
128 |
+
== (d_model is None or num_layers is None or vocab_size is None)
|
129 |
+
):
|
130 |
+
raise ValueError(
|
131 |
+
"Must provide either a model or d_model, num_layers, and vocab_size"
|
132 |
+
)
|
133 |
+
|
134 |
+
# Initializing from scratch without a model
|
135 |
+
if not model:
|
136 |
+
assert d_model and num_layers and vocab_size
|
137 |
+
self.layer_norm = th.nn.LayerNorm(d_model)
|
138 |
+
self.unembedding = th.nn.Linear(d_model, vocab_size, bias=False)
|
139 |
+
|
140 |
+
# Use HuggingFace methods to get decoder layers
|
141 |
+
else:
|
142 |
+
assert not (d_model or num_layers or vocab_size)
|
143 |
+
d_model = model.config.hidden_size
|
144 |
+
num_layers = model.config.num_hidden_layers
|
145 |
+
vocab_size = model.config.vocab_size
|
146 |
+
assert isinstance(d_model, int) and isinstance(vocab_size, int)
|
147 |
+
|
148 |
+
model_config = model.config.to_dict() # type: ignore[F841]
|
149 |
+
|
150 |
+
# Currently we convert the decoder to full precision
|
151 |
+
self.unembedding = deepcopy(model.get_output_embeddings()).float()
|
152 |
+
if ln := get_final_norm(model):
|
153 |
+
self.layer_norm = deepcopy(ln).float()
|
154 |
+
else:
|
155 |
+
self.layer_norm = th.nn.Identity()
|
156 |
+
|
157 |
+
if extra_layers:
|
158 |
+
_, layers = get_transformer_layers(model)
|
159 |
+
self.extra_layers.extend(
|
160 |
+
[maybe_wrap(layer) for layer in layers[-extra_layers:]]
|
161 |
+
)
|
162 |
+
|
163 |
+
# Save config for later
|
164 |
+
config_keys = set(inspect.getfullargspec(TunedLensOld).kwonlyargs)
|
165 |
+
self.config = {k: v for k, v in locals().items() if k in config_keys}
|
166 |
+
del model_config
|
167 |
+
|
168 |
+
# Try to prevent finetuning the decoder
|
169 |
+
assert d_model and num_layers
|
170 |
+
self.layer_norm.requires_grad_(False)
|
171 |
+
self.unembedding.requires_grad_(False)
|
172 |
+
|
173 |
+
out_features = d_model if reuse_unembedding else vocab_size
|
174 |
+
translator = th.nn.Linear(d_model, out_features, bias=bias)
|
175 |
+
if not reuse_unembedding:
|
176 |
+
translator.weight.data = self.unembedding.weight.data.clone()
|
177 |
+
translator.bias.data.zero_()
|
178 |
+
else:
|
179 |
+
translator.weight.data.zero_()
|
180 |
+
translator.bias.data.zero_()
|
181 |
+
|
182 |
+
self.add_module("input_translator", translator if include_input else None)
|
183 |
+
# Don't include the final layer
|
184 |
+
num_layers -= 1
|
185 |
+
|
186 |
+
self.layer_translators = th.nn.ModuleList(
|
187 |
+
[deepcopy(translator) for _ in range(num_layers)]
|
188 |
+
)
|
189 |
+
|
190 |
+
def __getitem__(self, item: int) -> th.nn.Module:
|
191 |
+
"""Get the probe module at the given index."""
|
192 |
+
if isinstance(self.input_translator, th.nn.Module):
|
193 |
+
if item == 0:
|
194 |
+
return self.input_translator
|
195 |
+
else:
|
196 |
+
item -= 1
|
197 |
+
|
198 |
+
return self.layer_translators[item]
|
199 |
+
|
200 |
+
def __iter__(self) -> Generator[th.nn.Module, None, None]:
|
201 |
+
"""Get iterator over the translators within the lens."""
|
202 |
+
if isinstance(self.input_translator, th.nn.Module):
|
203 |
+
yield self.input_translator
|
204 |
+
|
205 |
+
yield from self.layer_translators
|
206 |
+
|
207 |
+
@classmethod
|
208 |
+
def load(cls, resource_id: str, **kwargs) -> "TunedLensOld":
|
209 |
+
"""Load a tuned lens from a or hugging face hub.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
resource_id : The path to the directory containing the config and checkpoint
|
213 |
+
or the name of the model on the hugging face hub.
|
214 |
+
**kwargs : Additional arguments to pass to torch.load.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
A TunedLensOld instance.
|
218 |
+
"""
|
219 |
+
config_path, ckpt_path = load_lens_artifacts(resource_id)
|
220 |
+
# Load config
|
221 |
+
with open(config_path, "r") as f:
|
222 |
+
config = json.load(f)
|
223 |
+
|
224 |
+
# Load parameters
|
225 |
+
state = th.load(ckpt_path, **kwargs)
|
226 |
+
|
227 |
+
# Backwards compatibility we really need to stop renaming things
|
228 |
+
keys = list(state.keys())
|
229 |
+
for key in keys:
|
230 |
+
for old_key in ["probe", "adapter"]:
|
231 |
+
if old_key in key:
|
232 |
+
warn(
|
233 |
+
f"Loading a checkpoint with a '{old_key}' key. "
|
234 |
+
"This is deprecated and may be removed in a future version. "
|
235 |
+
)
|
236 |
+
new_key = key.replace(old_key, "translator")
|
237 |
+
state[new_key] = state.pop(key)
|
238 |
+
|
239 |
+
# Drop unrecognized config keys
|
240 |
+
unrecognized = set(config) - set(inspect.getfullargspec(cls).kwonlyargs)
|
241 |
+
for key in unrecognized:
|
242 |
+
warn(f"Ignoring config key '{key}'")
|
243 |
+
del config[key]
|
244 |
+
|
245 |
+
lens = cls(**config)
|
246 |
+
|
247 |
+
if num_extras := config.get("extra_layers"):
|
248 |
+
# This is sort of a hack but AutoConfig doesn't appear to have a from_dict
|
249 |
+
# for some reason.
|
250 |
+
from transformers.models.auto import CONFIG_MAPPING
|
251 |
+
|
252 |
+
model_conf_dict = config.get("model_config")
|
253 |
+
del model_conf_dict["torch_dtype"]
|
254 |
+
assert model_conf_dict, "Need a 'model_config' entry to load extra layers"
|
255 |
+
|
256 |
+
model_type = model_conf_dict["model_type"]
|
257 |
+
config_cls = CONFIG_MAPPING[model_type]
|
258 |
+
model_config = config_cls.from_dict(model_conf_dict)
|
259 |
+
|
260 |
+
lens.extra_layers = th.nn.Sequential(
|
261 |
+
*[
|
262 |
+
instantiate_layer(
|
263 |
+
model_config, model_config.num_hidden_layers - i - 1, model_type
|
264 |
+
)
|
265 |
+
for i in range(num_extras)
|
266 |
+
]
|
267 |
+
)
|
268 |
+
|
269 |
+
lens.load_state_dict(state)
|
270 |
+
return lens
|
271 |
+
|
272 |
+
def save(
|
273 |
+
self,
|
274 |
+
path: Union[Path, str],
|
275 |
+
ckpt: str = "params.pt",
|
276 |
+
config: str = "config.json",
|
277 |
+
) -> None:
|
278 |
+
"""Save the lens to a directory.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
path : The path to the directory to save the lens to.
|
282 |
+
ckpt : The name of the checkpoint file to save the parameters to.
|
283 |
+
config : The name of the config file to save the config to.
|
284 |
+
"""
|
285 |
+
path = Path(path)
|
286 |
+
path.mkdir(exist_ok=True, parents=True)
|
287 |
+
th.save(self.state_dict(), path / ckpt)
|
288 |
+
|
289 |
+
with open(path / config, "w") as f:
|
290 |
+
json.dump(self.config, f)
|
291 |
+
|
292 |
+
def normalize_(self):
|
293 |
+
"""Canonicalize the transforms by centering their weights and biases."""
|
294 |
+
for linear in self:
|
295 |
+
assert isinstance(linear, th.nn.Linear)
|
296 |
+
|
297 |
+
A, b = linear.weight.data, linear.bias.data
|
298 |
+
A -= A.mean(dim=0, keepdim=True)
|
299 |
+
b -= b.mean()
|
300 |
+
|
301 |
+
def transform_hidden(self, h: th.Tensor, idx: int) -> th.Tensor:
|
302 |
+
"""Transform hidden state from layer `idx`."""
|
303 |
+
if not self.config["reuse_unembedding"]:
|
304 |
+
raise RuntimeError("TunedLensOld.transform_hidden requires reuse_unembedding")
|
305 |
+
|
306 |
+
# Note that we add the translator output residually, in contrast to the formula
|
307 |
+
# in the paper. By parametrizing it this way we ensure that weight decay
|
308 |
+
# regularizes the transform toward the identity, not the zero transformation.
|
309 |
+
return h + self[idx](h)
|
310 |
+
|
311 |
+
def to_logits(self, h: th.Tensor) -> th.Tensor:
|
312 |
+
"""Decode a hidden state into logits."""
|
313 |
+
h = self.extra_layers(h)
|
314 |
+
while isinstance(h, tuple):
|
315 |
+
h, *_ = h
|
316 |
+
|
317 |
+
return self.unembedding(self.layer_norm(h))
|
318 |
+
|
319 |
+
def forward(self, h: th.Tensor, idx: int) -> th.Tensor:
|
320 |
+
"""Transform and then decode the hidden states into logits."""
|
321 |
+
# Sanity check to make sure we don't finetune the decoder
|
322 |
+
# if any(p.requires_grad for p in self.parameters(recurse=False)):
|
323 |
+
# raise RuntimeError("Make sure to freeze the decoder")
|
324 |
+
|
325 |
+
# We're learning a separate unembedding for each layer
|
326 |
+
if not self.config["reuse_unembedding"]:
|
327 |
+
h_ = self.layer_norm(h)
|
328 |
+
return self[idx](h_)
|
329 |
+
|
330 |
+
h = self.transform_hidden(h, idx)
|
331 |
+
return self.to_logits(h)
|
332 |
+
|
333 |
+
def __len__(self) -> int:
|
334 |
+
"""Return the number of layer translators in the lens."""
|
335 |
+
N = len(self.layer_translators)
|
336 |
+
if self.input_translator:
|
337 |
+
N += 1
|
338 |
+
|
339 |
+
return N
|
340 |
+
|
341 |
+
|
342 |
+
if __name__ == "__main__":
|
343 |
+
parser = argparse.ArgumentParser()
|
344 |
+
parser.add_argument("--model", type=str, default="gpt2")
|
345 |
+
parser.add_argument("--resource-id", type=str, default="gpt2")
|
346 |
+
parser.add_argument("--output-dir", type=str, default="lens/gpt2")
|
347 |
+
args = parser.parse_args()
|
348 |
+
|
349 |
+
model = AutoModelForCausalLM.from_pretrained(args.model)
|
350 |
+
revision = model_info(args.model).sha
|
351 |
+
model.eval()
|
352 |
+
model.requires_grad_(False)
|
353 |
+
|
354 |
+
device = th.device("cuda:0" if th.cuda.is_available() else "cpu")
|
355 |
+
|
356 |
+
print("Loading old lens")
|
357 |
+
tuned_lens_old = TunedLensOld.load(args.resource_id, map_location=device)
|
358 |
+
|
359 |
+
print("Initializing new lens")
|
360 |
+
tuned_lens = TunedLens.from_model(
|
361 |
+
model, bias=tuned_lens_old.config['bias'], revision=revision
|
362 |
+
)
|
363 |
+
|
364 |
+
for i in tqdm(range(len(tuned_lens_old)), desc="Copying parameters"):
|
365 |
+
tuned_lens[i].load_state_dict(tuned_lens_old[i].state_dict())
|
366 |
+
|
367 |
+
|
368 |
+
tuned_lens = tuned_lens.to(device)
|
369 |
+
tuned_lens_old = tuned_lens_old.to(device)
|
370 |
+
model = model.to(device)
|
371 |
+
|
372 |
+
# Fuzz the new lens against the old one's
|
373 |
+
with th.no_grad():
|
374 |
+
for i in tqdm(range(len(tuned_lens)), desc="Fuzzing layers"):
|
375 |
+
for _ in range(10):
|
376 |
+
a = th.randn(1, 1, tuned_lens.config.d_model, device=device)
|
377 |
+
logits_new = tuned_lens(a, i)
|
378 |
+
logits_old = tuned_lens_old(a, i)
|
379 |
+
log_ps_new = logits_new.log_softmax(-1)
|
380 |
+
log_ps_old = logits_old.log_softmax(-1)
|
381 |
+
print("js div", js_divergence(log_ps_new, log_ps_old))
|
382 |
+
assert (th.allclose(log_ps_new, log_ps_old, atol=1e-4)), (log_ps_new - log_ps_old).abs().max()
|
383 |
+
print("Saving new lens to", args.output_dir)
|
384 |
+
tuned_lens.to(th.device("cpu")).save(args.output_dir)
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
set -e
|
4 |
+
|
5 |
+
for i in pythia-70m-deduped-v0,EleutherAI/pythia-70m-deduped-v0
|
6 |
+
do
|
7 |
+
IFS=","
|
8 |
+
set -- $i
|
9 |
+
echo "migrating $2"
|
10 |
+
CUDA_VISIBLE_DEVICES=-1 python3 lens_migration.py --model $2 --resource-id $1 --output lens/$1
|
11 |
+
git commit -am "$1 migrated"
|
12 |
+
done
|