levmckinney commited on
Commit
438fb10
·
1 Parent(s): 37317f0

Lens Migration (#29)

Browse files

- added migration utils (e49cdfa4c2d778941ea6cf7034fba5d07da3bbf3)
- lens migration script updated (dba1d6efbb66f4f4179f8346d82ecc54352ec061)
- added more logging to migration process (b9dc12272996eacecb86c5e26b05bb590696d726)
- fixed tqdm import (af698699c828c7fd15d84fcb29bc74fe74393b17)
- made lp tolorance in fuzzing slightly looser (19bac2b76ffba0fdb8321df557ff8fc09311f67a)
- gpt2 migrated (7667318c2700d6b1b36c930da34375cab1b5fedd)
- pythia-160m-deduped-v0 migrated (7be85cfe412be0e524fe43cac2fb1aee2fdbe4dc)
- gpt2-large migrated (2fb9929f5a66f0ee06481efa1f7ead7ede1dc4e4)
- gpt2-xl migrated (909d1269f428b3ffee95b8787e85105175321157)
- opt-125m migrated (eb6b4f31266289e15e067da975e076c8f1042f82)
- opt-6.7b migrated (6caa2f8be45a2bc5827adbbc59a0814b2e871e06)
- reduced atol (20b0e5b729d5c05b924a171a6534026bc3e355e8)
- skiping pythia 1.4b for now and decreaing atol (ab69474f2ad8839f0a9abaed422b4b2384153f89)
- pythia-1b-deduped-v0 migrated (e8403e5a615ccb20dbcbc7b8fe300dbdde820f8a)
- pythia-6.9b-deduped-v0 migrated (70b412332829c9729e39a830e2b47c9a4b86b791)
- opt-1.3b migrated (e01dcb55b59d999c44571516fa0a9989e1364838)
- pythia-410m-deduped-v0 migrated (d11af574430b3113c77831bea3f631ad24a3a0a2)
- pythia-12b-deduped-v0 migrated (381a4f2370f767bbede8706505764d3961fb3b84)
- gpt-neox-20b migrated (62c1cda78d538a94b0f022008d7a21058248f245)
- reduced atol to migrate pythia 1.4b deduped v0 (71df1afeec06b4749040e195cfbec7241e71345e)
- pythia-1.4b-deduped-v0 migrated (578983926f7b9916d7637cf77c7fb9185645c610)
- pythia-70m-deduped-v0 migrated (9a43b714f2a5370f5b85418487205997d9ba4a83)

lens/gpt-neox-20b/config.json CHANGED
@@ -1 +1 @@
1
- {"bias": true, "identity_init": true, "include_input": true, "include_final": false, "orthogonal": false, "rank": null, "sublayers": false, "d_model": 6144, "num_layers": 44, "vocab_size": 50432}
 
1
+ {"base_model_name_or_path": "EleutherAI/gpt-neox-20b", "d_model": 6144, "num_hidden_layers": 44, "bias": true, "base_model_revision": "4e49eadb5d14bd22f314ec3f45b69a87b88c7691", "unemebd_hash": "323d4c731c33556e143503e3be913c109ead330080b4065552be97000c19ed67", "lens_type": "linear_tuned_lens"}
lens/gpt-neox-20b/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:774144e329ee3741d0a7fff85b342f1a996aa24c788c3f741b03df596948a66d
3
- size 3942186487
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3c0e5911cbdabd33e5a59112eefb4f234a487fac77f830be7fc238ffb72e776
3
+ size 6644881483
lens/gpt2-large/config.json CHANGED
@@ -1,7 +1 @@
1
- {
2
- "include_input": true,
3
- "num_layers": 36,
4
- "vocab_size": 50257,
5
- "bias": true,
6
- "d_model": 1280
7
- }
 
1
+ {"base_model_name_or_path": "gpt2-large", "d_model": 1280, "num_hidden_layers": 36, "bias": true, "base_model_revision": "212095d5832abbf9926672e1c1e8d14312a3be20", "unemebd_hash": "9b7da774c0a326716dca888539370ddff25804795949e5ace65ef9f761f47397", "lens_type": "linear_tuned_lens"}
 
 
 
 
 
 
lens/gpt2-large/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:900bde39d9ad903985824852171f40ae406969dd7e92d1b5003f4208e4651b51
3
- size 493459767
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291a85a7f524378221e2af0814c2a98c68f740c38993a0b62863f50adb3231db
3
+ size 236130371
lens/gpt2-xl/config.json CHANGED
@@ -1,7 +1 @@
1
- {
2
- "bias": true,
3
- "include_input": true,
4
- "d_model": 1600,
5
- "num_layers": 48,
6
- "vocab_size": 50257
7
- }
 
1
+ {"base_model_name_or_path": "gpt2-xl", "d_model": 1600, "num_hidden_layers": 48, "bias": true, "base_model_revision": "33cdb5c0db5423c1879b1b9f16c352988e8754a8", "unemebd_hash": "70bf58a8cf7964b39530e30fdaebb89de39489546244437b1ed56fb81bd4c746", "lens_type": "linear_tuned_lens"}
 
 
 
 
 
 
lens/gpt2-xl/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:96ea1cf6b4fa0c22710e7dd64499fecff2f4f6b0f1fb5f9d277d43e46cf88947
3
- size 813510935
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c9b8eaf307a87965188d2311ee4d90d3c7868611e20aab263bc8e30b51320b6
3
+ size 491849251
lens/gpt2/config.json CHANGED
@@ -1,7 +1 @@
1
- {
2
- "bias": true,
3
- "include_input": true,
4
- "d_model": 768,
5
- "num_layers": 12,
6
- "vocab_size": 50257
7
- }
 
1
+ {"base_model_name_or_path": "gpt2", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "e7da7f221d5bf496a48136c0cd264e630fe9fcc8", "unemebd_hash": "608e50247f57691c90453601e854f2287141e4db9cba436af0b0186003e2daae", "lens_type": "linear_tuned_lens"}
 
 
 
 
 
 
lens/gpt2/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9310b4ce09a053b38aa79dab8616309dc37db0d74a58ed683c1347859f9d9343
3
- size 182751031
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e0494dcf4a56a77b73b421820941ea948ffae0c6a0391d88c9cb10b48bc19c8
3
+ size 28353795
lens/opt-1.3b/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "layer_norm": false, "mlp_hidden_sizes": [], "rank": null, "shared_mlp_hidden_sizes": [], "share_weights": false, "sublayers": false, "num_layers": 24, "vocab_size": 50272, "bias": true, "d_model": 2048}
 
1
+ {"base_model_name_or_path": "facebook/opt-1.3b", "d_model": 2048, "num_hidden_layers": 24, "bias": true, "base_model_revision": "8c7b10754972749675d22364c25c428b29face51", "unemebd_hash": "2db68eed8b11e46e8a969c14b1ce9269edec3154b19cdd18970dcfc405533070", "lens_type": "linear_tuned_lens"}
lens/opt-1.3b/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad2f68f2cdb252dd1019ee745f71fc016506064ee1811ef103ceecc93c31c9dc
3
- size 814707799
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b5620752d01fcca26f5b7c36ec2b741974b570adfb64bffbd901cdc01dc9df9
3
+ size 402860707
lens/opt-125m/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "layer_norm": false, "mlp_hidden_sizes": [], "rank": null, "shared_mlp_hidden_sizes": [], "share_weights": false, "sublayers": false, "num_layers": 12, "vocab_size": 50272, "bias": true, "d_model": 768}
 
1
+ {"base_model_name_or_path": "facebook/opt-125m", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "3d2b5f275bdf882b8775f902e1bfdb790e2cfc32", "unemebd_hash": "d54b1bdd7e16d4dab3bb9f1856c1146310a3ce228e667640843455a3956dc9b4", "lens_type": "linear_tuned_lens"}
lens/opt-125m/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bae8648dc89c2b7ae903d231b2d38d87616dae5ffec7e79e3e549fec8207c159
3
- size 182797111
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f61d7716618783244f2e7f5d26022df092b80695e9620ccb02c5ffb70f9b1405
3
+ size 28353795
lens/opt-6.7b/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "layer_norm": false, "mlp_hidden_sizes": [], "rank": null, "shared_mlp_hidden_sizes": [], "share_weights": false, "sublayers": false, "num_layers": 32, "vocab_size": 50272, "bias": true, "d_model": 4096}
 
1
+ {"base_model_name_or_path": "facebook/opt-6.7b", "d_model": 4096, "num_hidden_layers": 32, "bias": true, "base_model_revision": "a45aa65bbeb77c1558bc99bedc6779195462dab0", "unemebd_hash": "35676bc5e38da5b53231218f1c829b91bc89de7f65fec1b2fe885b9c42f93dcb", "lens_type": "linear_tuned_lens"}
lens/opt-6.7b/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc4721db7049a4d0e9b84a07c44e58da28c778ba58bd42540e58507e2664fc10
3
- size 2971714775
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9580fbf6e967c1be832ef415f3f74c0f6ee111637fba253dc5a75216dc305ebb
3
+ size 2148022563
lens/pythia-1.4b-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"identity_init": true, "include_input": true, "rank": null, "shared_mlp_hidden_sizes": [], "sublayers": false, "num_layers": 24, "vocab_size": 50304, "bias": true, "d_model": 2048, "dropout": 0.0, "mlp_hidden_sizes": []}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-1.4b-deduped-v0", "d_model": 2048, "num_hidden_layers": 24, "bias": true, "base_model_revision": "b541e01fddacd3038799915cf8ff5b52e835a6c4", "unemebd_hash": "da1780eccec1a4ff12e43464da6cbef33b9ffde398a3056ac9648dd53229943e", "lens_type": "linear_tuned_lens"}
lens/pythia-1.4b-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:993076b6486e55555a3699f44d74ede2235db26df9c61bccfed338077b6c8474
3
- size 814969879
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:713d414666c3a99f4e08cbfb700e40ba551989a2d99bba9e649e7b568f6e3974
3
+ size 402860707
lens/pythia-12b-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "mlp_hidden_sizes": [], "rank": null, "shared_mlp_hidden_sizes": [], "share_weights": false, "sublayers": false, "num_layers": 36, "vocab_size": 50688, "bias": true, "d_model": 5120}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-12b-deduped-v0", "d_model": 5120, "num_hidden_layers": 36, "bias": true, "base_model_revision": "b497662035bf3c80b4f6a1ddfe09bc27763e843a", "unemebd_hash": "a161c0d1dd8793ca1683b0422f3b6573178ea7ebf26cf207e40cc56507aa0526", "lens_type": "linear_tuned_lens"}
lens/pythia-12b-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ca1e95270638a16156cc21f3358ad70162b79d58f1c5e84a5307a72ac4fa97d
3
- size 4813762539
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e34c28c900b7230afe7ae1dc99b58b82c22b3265de2cbf939e3946cdcec126
3
+ size 3775627331
lens/pythia-160m-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "rank": null, "shared_mlp_hidden_sizes": [], "sublayers": false, "num_layers": 12, "vocab_size": 50304, "bias": true, "d_model": 768, "mlp_hidden_sizes": []}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-160m-deduped-v0", "d_model": 768, "num_hidden_layers": 12, "bias": true, "base_model_revision": "7e57cc978f5da949f028f36b5baf8f5d6c3281b1", "unemebd_hash": "922e5aee39d4874fb5c1163087858333808367bf9b02c4a1ae4a06828af2f58a", "lens_type": "linear_tuned_lens"}
lens/pythia-160m-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08f5da07bcfe2acce3088562897bab4ac871382c64b9a35eea9e4bfd1a5c075d
3
- size 182895415
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9644fe7196ae4ab63ce2ce1c7a22f63ae548021a27bac57c4c1cdd200d982cf8
3
+ size 28353795
lens/pythia-1b-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"identity_init": true, "include_input": true, "rank": null, "shared_mlp_hidden_sizes": [], "sublayers": false, "num_layers": 16, "vocab_size": 50304, "bias": true, "d_model": 2048, "dropout": 0.0, "mlp_hidden_sizes": []}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-1b-deduped-v0", "d_model": 2048, "num_hidden_layers": 16, "bias": true, "base_model_revision": "021f79f50ff000ae1c159e22402ffec62284664d", "unemebd_hash": "b97dd35a220ea2694e263be05d2f19129fc5725c1d201d83eae5a78eeebcf527", "lens_type": "linear_tuned_lens"}
lens/pythia-1b-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8c83f3fdb656c409e8cf2c5ecef1a4aba7d2bfd1f3fe4e0fa1b24602fc03279
3
- size 680682391
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e10ed1a0b10251aaf1b7c542f14ad2c7a850103dfdffcd9da3d21e107d779eeb
3
+ size 268573731
lens/pythia-410m-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"identity_init": true, "include_input": true, "rank": null, "shared_mlp_hidden_sizes": [], "sublayers": false, "num_layers": 24, "vocab_size": 50304, "bias": true, "d_model": 1024, "dropout": 0.0, "mlp_hidden_sizes": []}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-410m-deduped-v0", "d_model": 1024, "num_hidden_layers": 24, "bias": true, "base_model_revision": "3538d3569a7e313e445ad6401c92c6e16777a2da", "unemebd_hash": "281af3dac813ef2f2eb5a1a359c402627bc9cf104710d00f891f767b17687758", "lens_type": "linear_tuned_lens"}
lens/pythia-410m-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f93915ee38d64c003558d6b931e1c3ce964d70df53415d6695b489c2789fea84
3
- size 306828311
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:257a17d052d6bda84f338b1aa22ded8c17c401e1299b64cdab521178708ee7ac
3
+ size 100772515
lens/pythia-6.9b-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"identity_init": true, "include_input": true, "rank": null, "shared_mlp_hidden_sizes": [], "sublayers": false, "num_layers": 32, "vocab_size": 50432, "bias": true, "d_model": 4096, "dropout": 0.0, "mlp_hidden_sizes": []}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-6.9b-deduped-v0", "d_model": 4096, "num_hidden_layers": 32, "bias": true, "base_model_revision": "cbd53efc2e56056e3bd0235277b5d0b668a6dfbb", "unemebd_hash": "5a037e6f7542abd5e0817e46c7e9127c18164ac34d06051b5faac190103f6951", "lens_type": "linear_tuned_lens"}
lens/pythia-6.9b-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79de8a9a4cc3fdfcf8283b5eaee157eb627ea2798b1e806469d9af45a4663e43
3
- size 2974336215
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c99da7167d4a45a71c2f04c2db4d716a7a63f27406cb8948c9cb9f6c052b91c
3
+ size 2148022563
lens/pythia-70m-deduped-v0/config.json CHANGED
@@ -1 +1 @@
1
- {"dropout": 0.0, "identity_init": true, "include_input": true, "mlp_hidden_sizes": [], "rank": null, "shared_mlp_hidden_sizes": [], "share_weights": false, "sublayers": false, "num_layers": 6, "vocab_size": 50304, "bias": true, "d_model": 512}
 
1
+ {"base_model_name_or_path": "EleutherAI/pythia-70m-deduped-v0", "d_model": 512, "num_hidden_layers": 6, "bias": true, "base_model_revision": "ec30f7539a604fcb0b7fbba04fb1eb0110735d29", "unemebd_hash": "6c42572c654f76afb6ad30aafac2644308d5e3e708ee54051fa9d4e043918f3a", "lens_type": "linear_tuned_lens"}
lens/pythia-70m-deduped-v0/params.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc81f39274f8bb18da904101855903a3fbb885a21a27c5e4a66a90ce306f85d9
3
- size 109334503
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbfc06e4d8733b1fccd5e1bb9cabd845072abfc8b92902ae1bbcbb2763fbc014
3
+ size 6306739
lens_migration.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from huggingface_hub import model_info
3
+ import argparse
4
+ from copy import deepcopy
5
+ import inspect
6
+ from logging import warn
7
+ from pathlib import Path
8
+ from tqdm import tqdm
9
+ import json
10
+
11
+ from tuned_lens.model_surgery import get_final_norm, get_transformer_layers
12
+ from tuned_lens.load_artifacts import load_lens_artifacts
13
+ from tuned_lens.nn import TunedLens
14
+ from transformers.models.bloom.modeling_bloom import BloomBlock
15
+ from transformers import PreTrainedModel, AutoModelForCausalLM
16
+ from typing import Optional, Generator, Union
17
+ import torch as th
18
+
19
+ from tuned_lens.stats.distance import js_divergence
20
+
21
+
22
+ def instantiate_layer(model_config, layer_idx: int, model_type: str) -> th.nn.Module:
23
+ if model_type == "bloom":
24
+ from transformers.models.bloom.modeling_bloom import BloomBlock
25
+
26
+ return _BloomBlockWrapper(BloomBlock(model_config)) # type: ignore[arg-type]
27
+ if model_type == "gpt_neo":
28
+ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoBlock
29
+
30
+ return GPTNeoBlock(model_config, layer_idx)
31
+ if model_type == "gpt_neox":
32
+ from transformers.models.gpt_neox.modeling_gpt_neox import (
33
+ GPTNeoXLayer,
34
+ )
35
+
36
+ return GPTNeoXLayer(model_config) # type: ignore[arg-type]
37
+ if model_type == "gpt2":
38
+ from transformers.models.gpt2.modeling_gpt2 import GPT2Block
39
+
40
+ return GPT2Block(model_config, layer_idx) # type: ignore[arg-type]
41
+ if model_type == "opt":
42
+ from transformers.models.opt.modeling_opt import OPTDecoderLayer
43
+
44
+ return OPTDecoderLayer(model_config) # type: ignore[arg-type]
45
+ else:
46
+ raise ValueError(f"Unknown model type '{model_type}'")
47
+
48
+
49
+ def maybe_wrap(layer: th.nn.Module) -> th.nn.Module:
50
+ return _BloomBlockWrapper(layer) if isinstance(layer, BloomBlock) else layer
51
+
52
+
53
+ # Very annoying that we have to do this. See https://bit.ly/3XSQ7W6 for context on
54
+ # what we're doing here.
55
+ class _BloomBlockWrapper(th.nn.Module):
56
+ def __init__(self, block: BloomBlock):
57
+ super().__init__()
58
+ self.block = block
59
+
60
+ def forward(self, x: th.Tensor) -> th.Tensor:
61
+ from transformers.models.bloom.modeling_bloom import (
62
+ BloomModel,
63
+ build_alibi_tensor,
64
+ )
65
+
66
+ batch_size, seq_len, _ = x.shape
67
+ dummy_mask = x.new_ones([batch_size, seq_len])
68
+
69
+ # Causal mask isn't created inside the block itself, so we have to do it here.
70
+ # Weirdly _prepare_attn_mask doesn't depend on `self` at all but is still an
71
+ # instance method for some reason, so we pass `None` as the first argument.
72
+ causal_mask = BloomModel._prepare_attn_mask(
73
+ None, dummy_mask, (batch_size, seq_len), 0 # type: ignore[arg-type]
74
+ )
75
+ alibi = build_alibi_tensor(dummy_mask, self.block.num_heads, x.dtype)
76
+ h, *_ = self.block(x, alibi, causal_mask)
77
+ return h
78
+
79
+
80
+ class TunedLensOld(th.nn.Module):
81
+ """A tuned lens for decoding hidden states into logits."""
82
+
83
+ layer_norm: th.nn.LayerNorm
84
+ unembedding: th.nn.Linear
85
+ extra_layers: th.nn.Sequential
86
+ layer_translators: th.nn.ModuleList
87
+
88
+ def __init__(
89
+ self,
90
+ model: Optional[PreTrainedModel] = None,
91
+ *,
92
+ bias: bool = True,
93
+ extra_layers: int = 0,
94
+ include_input: bool = True,
95
+ reuse_unembedding: bool = True,
96
+ # Used when saving and loading the lens
97
+ model_config: Optional[dict] = None,
98
+ d_model: Optional[int] = None,
99
+ num_layers: Optional[int] = None,
100
+ vocab_size: Optional[int] = None,
101
+ ):
102
+ """Create a TunedLensOld.
103
+
104
+ Args:
105
+ model : A pertained model from the transformers library you wish to inspect.
106
+ bias : Whether to include a bias term in the translator layers.
107
+ extra_layers : The number of extra layers to apply to the hidden states
108
+ before decoding into logits.
109
+
110
+ include_input : Whether to include a lens that decodes the word embeddings.
111
+ reuse_unembedding : Weather to reuse the unembedding matrix from the model.
112
+ model_config : The config of the model. Used for saving and loading.
113
+ d_model : The models hidden size. Used for saving and loading.
114
+ num_layers : The number of layers in the model. Used for saving and loading.
115
+ vocab_size : The size of the vocabulary. Used for saving and loading.
116
+
117
+ Raises:
118
+ ValueError: if neither a model or d_model, num_layers, and vocab_size,
119
+ are provided.
120
+ """
121
+ super().__init__()
122
+
123
+ self.extra_layers = th.nn.Sequential()
124
+
125
+ if (
126
+ model
127
+ is None
128
+ == (d_model is None or num_layers is None or vocab_size is None)
129
+ ):
130
+ raise ValueError(
131
+ "Must provide either a model or d_model, num_layers, and vocab_size"
132
+ )
133
+
134
+ # Initializing from scratch without a model
135
+ if not model:
136
+ assert d_model and num_layers and vocab_size
137
+ self.layer_norm = th.nn.LayerNorm(d_model)
138
+ self.unembedding = th.nn.Linear(d_model, vocab_size, bias=False)
139
+
140
+ # Use HuggingFace methods to get decoder layers
141
+ else:
142
+ assert not (d_model or num_layers or vocab_size)
143
+ d_model = model.config.hidden_size
144
+ num_layers = model.config.num_hidden_layers
145
+ vocab_size = model.config.vocab_size
146
+ assert isinstance(d_model, int) and isinstance(vocab_size, int)
147
+
148
+ model_config = model.config.to_dict() # type: ignore[F841]
149
+
150
+ # Currently we convert the decoder to full precision
151
+ self.unembedding = deepcopy(model.get_output_embeddings()).float()
152
+ if ln := get_final_norm(model):
153
+ self.layer_norm = deepcopy(ln).float()
154
+ else:
155
+ self.layer_norm = th.nn.Identity()
156
+
157
+ if extra_layers:
158
+ _, layers = get_transformer_layers(model)
159
+ self.extra_layers.extend(
160
+ [maybe_wrap(layer) for layer in layers[-extra_layers:]]
161
+ )
162
+
163
+ # Save config for later
164
+ config_keys = set(inspect.getfullargspec(TunedLensOld).kwonlyargs)
165
+ self.config = {k: v for k, v in locals().items() if k in config_keys}
166
+ del model_config
167
+
168
+ # Try to prevent finetuning the decoder
169
+ assert d_model and num_layers
170
+ self.layer_norm.requires_grad_(False)
171
+ self.unembedding.requires_grad_(False)
172
+
173
+ out_features = d_model if reuse_unembedding else vocab_size
174
+ translator = th.nn.Linear(d_model, out_features, bias=bias)
175
+ if not reuse_unembedding:
176
+ translator.weight.data = self.unembedding.weight.data.clone()
177
+ translator.bias.data.zero_()
178
+ else:
179
+ translator.weight.data.zero_()
180
+ translator.bias.data.zero_()
181
+
182
+ self.add_module("input_translator", translator if include_input else None)
183
+ # Don't include the final layer
184
+ num_layers -= 1
185
+
186
+ self.layer_translators = th.nn.ModuleList(
187
+ [deepcopy(translator) for _ in range(num_layers)]
188
+ )
189
+
190
+ def __getitem__(self, item: int) -> th.nn.Module:
191
+ """Get the probe module at the given index."""
192
+ if isinstance(self.input_translator, th.nn.Module):
193
+ if item == 0:
194
+ return self.input_translator
195
+ else:
196
+ item -= 1
197
+
198
+ return self.layer_translators[item]
199
+
200
+ def __iter__(self) -> Generator[th.nn.Module, None, None]:
201
+ """Get iterator over the translators within the lens."""
202
+ if isinstance(self.input_translator, th.nn.Module):
203
+ yield self.input_translator
204
+
205
+ yield from self.layer_translators
206
+
207
+ @classmethod
208
+ def load(cls, resource_id: str, **kwargs) -> "TunedLensOld":
209
+ """Load a tuned lens from a or hugging face hub.
210
+
211
+ Args:
212
+ resource_id : The path to the directory containing the config and checkpoint
213
+ or the name of the model on the hugging face hub.
214
+ **kwargs : Additional arguments to pass to torch.load.
215
+
216
+ Returns:
217
+ A TunedLensOld instance.
218
+ """
219
+ config_path, ckpt_path = load_lens_artifacts(resource_id)
220
+ # Load config
221
+ with open(config_path, "r") as f:
222
+ config = json.load(f)
223
+
224
+ # Load parameters
225
+ state = th.load(ckpt_path, **kwargs)
226
+
227
+ # Backwards compatibility we really need to stop renaming things
228
+ keys = list(state.keys())
229
+ for key in keys:
230
+ for old_key in ["probe", "adapter"]:
231
+ if old_key in key:
232
+ warn(
233
+ f"Loading a checkpoint with a '{old_key}' key. "
234
+ "This is deprecated and may be removed in a future version. "
235
+ )
236
+ new_key = key.replace(old_key, "translator")
237
+ state[new_key] = state.pop(key)
238
+
239
+ # Drop unrecognized config keys
240
+ unrecognized = set(config) - set(inspect.getfullargspec(cls).kwonlyargs)
241
+ for key in unrecognized:
242
+ warn(f"Ignoring config key '{key}'")
243
+ del config[key]
244
+
245
+ lens = cls(**config)
246
+
247
+ if num_extras := config.get("extra_layers"):
248
+ # This is sort of a hack but AutoConfig doesn't appear to have a from_dict
249
+ # for some reason.
250
+ from transformers.models.auto import CONFIG_MAPPING
251
+
252
+ model_conf_dict = config.get("model_config")
253
+ del model_conf_dict["torch_dtype"]
254
+ assert model_conf_dict, "Need a 'model_config' entry to load extra layers"
255
+
256
+ model_type = model_conf_dict["model_type"]
257
+ config_cls = CONFIG_MAPPING[model_type]
258
+ model_config = config_cls.from_dict(model_conf_dict)
259
+
260
+ lens.extra_layers = th.nn.Sequential(
261
+ *[
262
+ instantiate_layer(
263
+ model_config, model_config.num_hidden_layers - i - 1, model_type
264
+ )
265
+ for i in range(num_extras)
266
+ ]
267
+ )
268
+
269
+ lens.load_state_dict(state)
270
+ return lens
271
+
272
+ def save(
273
+ self,
274
+ path: Union[Path, str],
275
+ ckpt: str = "params.pt",
276
+ config: str = "config.json",
277
+ ) -> None:
278
+ """Save the lens to a directory.
279
+
280
+ Args:
281
+ path : The path to the directory to save the lens to.
282
+ ckpt : The name of the checkpoint file to save the parameters to.
283
+ config : The name of the config file to save the config to.
284
+ """
285
+ path = Path(path)
286
+ path.mkdir(exist_ok=True, parents=True)
287
+ th.save(self.state_dict(), path / ckpt)
288
+
289
+ with open(path / config, "w") as f:
290
+ json.dump(self.config, f)
291
+
292
+ def normalize_(self):
293
+ """Canonicalize the transforms by centering their weights and biases."""
294
+ for linear in self:
295
+ assert isinstance(linear, th.nn.Linear)
296
+
297
+ A, b = linear.weight.data, linear.bias.data
298
+ A -= A.mean(dim=0, keepdim=True)
299
+ b -= b.mean()
300
+
301
+ def transform_hidden(self, h: th.Tensor, idx: int) -> th.Tensor:
302
+ """Transform hidden state from layer `idx`."""
303
+ if not self.config["reuse_unembedding"]:
304
+ raise RuntimeError("TunedLensOld.transform_hidden requires reuse_unembedding")
305
+
306
+ # Note that we add the translator output residually, in contrast to the formula
307
+ # in the paper. By parametrizing it this way we ensure that weight decay
308
+ # regularizes the transform toward the identity, not the zero transformation.
309
+ return h + self[idx](h)
310
+
311
+ def to_logits(self, h: th.Tensor) -> th.Tensor:
312
+ """Decode a hidden state into logits."""
313
+ h = self.extra_layers(h)
314
+ while isinstance(h, tuple):
315
+ h, *_ = h
316
+
317
+ return self.unembedding(self.layer_norm(h))
318
+
319
+ def forward(self, h: th.Tensor, idx: int) -> th.Tensor:
320
+ """Transform and then decode the hidden states into logits."""
321
+ # Sanity check to make sure we don't finetune the decoder
322
+ # if any(p.requires_grad for p in self.parameters(recurse=False)):
323
+ # raise RuntimeError("Make sure to freeze the decoder")
324
+
325
+ # We're learning a separate unembedding for each layer
326
+ if not self.config["reuse_unembedding"]:
327
+ h_ = self.layer_norm(h)
328
+ return self[idx](h_)
329
+
330
+ h = self.transform_hidden(h, idx)
331
+ return self.to_logits(h)
332
+
333
+ def __len__(self) -> int:
334
+ """Return the number of layer translators in the lens."""
335
+ N = len(self.layer_translators)
336
+ if self.input_translator:
337
+ N += 1
338
+
339
+ return N
340
+
341
+
342
+ if __name__ == "__main__":
343
+ parser = argparse.ArgumentParser()
344
+ parser.add_argument("--model", type=str, default="gpt2")
345
+ parser.add_argument("--resource-id", type=str, default="gpt2")
346
+ parser.add_argument("--output-dir", type=str, default="lens/gpt2")
347
+ args = parser.parse_args()
348
+
349
+ model = AutoModelForCausalLM.from_pretrained(args.model)
350
+ revision = model_info(args.model).sha
351
+ model.eval()
352
+ model.requires_grad_(False)
353
+
354
+ device = th.device("cuda:0" if th.cuda.is_available() else "cpu")
355
+
356
+ print("Loading old lens")
357
+ tuned_lens_old = TunedLensOld.load(args.resource_id, map_location=device)
358
+
359
+ print("Initializing new lens")
360
+ tuned_lens = TunedLens.from_model(
361
+ model, bias=tuned_lens_old.config['bias'], revision=revision
362
+ )
363
+
364
+ for i in tqdm(range(len(tuned_lens_old)), desc="Copying parameters"):
365
+ tuned_lens[i].load_state_dict(tuned_lens_old[i].state_dict())
366
+
367
+
368
+ tuned_lens = tuned_lens.to(device)
369
+ tuned_lens_old = tuned_lens_old.to(device)
370
+ model = model.to(device)
371
+
372
+ # Fuzz the new lens against the old one's
373
+ with th.no_grad():
374
+ for i in tqdm(range(len(tuned_lens)), desc="Fuzzing layers"):
375
+ for _ in range(10):
376
+ a = th.randn(1, 1, tuned_lens.config.d_model, device=device)
377
+ logits_new = tuned_lens(a, i)
378
+ logits_old = tuned_lens_old(a, i)
379
+ log_ps_new = logits_new.log_softmax(-1)
380
+ log_ps_old = logits_old.log_softmax(-1)
381
+ print("js div", js_divergence(log_ps_new, log_ps_old))
382
+ assert (th.allclose(log_ps_new, log_ps_old, atol=1e-4)), (log_ps_new - log_ps_old).abs().max()
383
+ print("Saving new lens to", args.output_dir)
384
+ tuned_lens.to(th.device("cpu")).save(args.output_dir)
migrate.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ set -e
4
+
5
+ for i in pythia-70m-deduped-v0,EleutherAI/pythia-70m-deduped-v0
6
+ do
7
+ IFS=","
8
+ set -- $i
9
+ echo "migrating $2"
10
+ CUDA_VISIBLE_DEVICES=-1 python3 lens_migration.py --model $2 --resource-id $1 --output lens/$1
11
+ git commit -am "$1 migrated"
12
+ done