Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import PyPDF2
|
4 |
import numpy as np
|
5 |
import faiss
|
6 |
-
import torch
|
7 |
-
import streamlit as st
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
9 |
-
from datasets import Dataset
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Load embedding model
|
14 |
@st.cache_resource
|
@@ -24,47 +27,15 @@ def parse_pdf(file):
|
|
24 |
return text
|
25 |
|
26 |
# Split text into chunks
|
27 |
-
def split_text(text, chunk_size=500):
|
28 |
-
|
|
|
29 |
|
30 |
# Create FAISS index
|
31 |
-
def create_faiss_index(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
return index
|
36 |
-
|
37 |
-
# Fine-tune the model
|
38 |
-
def fine_tune_model(dataset, model_name, output_dir="./fine-tuned-model"):
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
41 |
-
|
42 |
-
def preprocess_function(examples):
|
43 |
-
inputs = [f"Question: {q} Answer: {a}" for q, a in zip(examples["question"], examples["answer"])]
|
44 |
-
return tokenizer(inputs, truncation=True, padding="max_length", max_length=512)
|
45 |
-
|
46 |
-
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
47 |
-
|
48 |
-
training_args = TrainingArguments(
|
49 |
-
output_dir=output_dir,
|
50 |
-
per_device_train_batch_size=4,
|
51 |
-
num_train_epochs=3,
|
52 |
-
save_steps=10_000,
|
53 |
-
save_total_limit=2,
|
54 |
-
)
|
55 |
-
|
56 |
-
trainer = Trainer(
|
57 |
-
model=model,
|
58 |
-
args=training_args,
|
59 |
-
train_dataset=tokenized_dataset,
|
60 |
-
tokenizer=tokenizer,
|
61 |
-
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
62 |
-
)
|
63 |
-
|
64 |
-
trainer.train()
|
65 |
-
model.save_pretrained(output_dir)
|
66 |
-
tokenizer.save_pretrained(output_dir)
|
67 |
-
return output_dir
|
68 |
|
69 |
# Generate response from the model
|
70 |
def generate_response(prompt, model, tokenizer):
|
@@ -75,62 +46,89 @@ def generate_response(prompt, model, tokenizer):
|
|
75 |
|
76 |
# Main Streamlit app
|
77 |
def main():
|
78 |
-
st.title("Chat with
|
79 |
-
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
embedding_model = load_embedding_model()
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
main()
|
|
|
1 |
import os
|
2 |
+
import streamlit as st
|
3 |
import PyPDF2
|
4 |
import numpy as np
|
5 |
import faiss
|
|
|
|
|
|
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain.llms import HuggingFacePipeline
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from transformers import pipeline
|
15 |
|
16 |
# Load embedding model
|
17 |
@st.cache_resource
|
|
|
27 |
return text
|
28 |
|
29 |
# Split text into chunks
|
30 |
+
def split_text(text, chunk_size=500, chunk_overlap=100):
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
32 |
+
return text_splitter.split_text(text)
|
33 |
|
34 |
# Create FAISS index
|
35 |
+
def create_faiss_index(texts, embedding_model):
|
36 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
37 |
+
vectorstore = FAISS.from_texts(texts, embeddings)
|
38 |
+
return vectorstore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Generate response from the model
|
41 |
def generate_response(prompt, model, tokenizer):
|
|
|
46 |
|
47 |
# Main Streamlit app
|
48 |
def main():
|
49 |
+
st.title("Advanced Chat with Your Document")
|
50 |
+
|
51 |
+
# Initialize session state for conversation history and documents
|
52 |
+
if "conversation_history" not in st.session_state:
|
53 |
+
st.session_state.conversation_history = []
|
54 |
+
if "vectorstore" not in st.session_state:
|
55 |
+
st.session_state.vectorstore = None
|
56 |
+
|
57 |
+
# Step 1: Upload multiple PDF files
|
58 |
+
uploaded_files = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True)
|
59 |
+
if uploaded_files:
|
60 |
+
st.write(f"{len(uploaded_files)} file(s) uploaded successfully!")
|
61 |
+
|
62 |
+
# Process PDFs
|
63 |
+
with st.spinner("Processing PDFs..."):
|
64 |
+
all_texts = []
|
65 |
+
for uploaded_file in uploaded_files:
|
66 |
+
pdf_text = parse_pdf(uploaded_file)
|
67 |
+
chunks = split_text(pdf_text)
|
68 |
+
all_texts.extend(chunks)
|
69 |
+
|
70 |
+
# Create a unified vector database
|
71 |
embedding_model = load_embedding_model()
|
72 |
+
st.session_state.vectorstore = create_faiss_index(all_texts, embedding_model)
|
73 |
+
|
74 |
+
st.success("PDFs processed! You can now ask questions.")
|
75 |
+
|
76 |
+
# Step 2: Chat interface
|
77 |
+
user_input = st.text_input("Ask a question about the document(s):")
|
78 |
+
if user_input:
|
79 |
+
if st.session_state.vectorstore is None:
|
80 |
+
st.error("Please upload and process documents first.")
|
81 |
+
return
|
82 |
+
|
83 |
+
with st.spinner("Generating response..."):
|
84 |
+
# Load the LLM
|
85 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # Replace with your local path
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
88 |
+
|
89 |
+
# Set up LangChain components
|
90 |
+
retriever = st.session_state.vectorstore.as_retriever()
|
91 |
+
llm = HuggingFacePipeline(pipeline=pipeline("text-generation", model=model, tokenizer=tokenizer))
|
92 |
+
|
93 |
+
# Define a custom prompt template for Chain-of-Thought reasoning
|
94 |
+
prompt_template = """
|
95 |
+
Answer the following question based ONLY on the provided context.
|
96 |
+
If the question requires multi-step reasoning, break it down step by step.
|
97 |
+
Context: {context}
|
98 |
+
Question: {question}
|
99 |
+
Answer:
|
100 |
+
"""
|
101 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
102 |
+
|
103 |
+
# Create a conversational retrieval chain
|
104 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
105 |
+
llm=llm,
|
106 |
+
retriever=retriever,
|
107 |
+
combine_docs_chain_kwargs={"prompt": prompt},
|
108 |
+
return_source_documents=True
|
109 |
+
)
|
110 |
+
|
111 |
+
# Add conversation history
|
112 |
+
chat_history = st.session_state.conversation_history[-3:] # Last 3 interactions
|
113 |
+
result = qa_chain({"question": user_input, "chat_history": chat_history})
|
114 |
+
|
115 |
+
# Extract response and update conversation history
|
116 |
+
response = result["answer"]
|
117 |
+
st.session_state.conversation_history.append(f"User: {user_input}")
|
118 |
+
st.session_state.conversation_history.append(f"Bot: {response}")
|
119 |
+
|
120 |
+
st.write(f"**Response:** {response}")
|
121 |
+
|
122 |
+
# Display source documents (optional)
|
123 |
+
if "source_documents" in result:
|
124 |
+
st.subheader("Source Documents")
|
125 |
+
for doc in result["source_documents"]:
|
126 |
+
st.write(doc.page_content)
|
127 |
+
|
128 |
+
# Display conversation history
|
129 |
+
st.subheader("Conversation History")
|
130 |
+
for line in st.session_state.conversation_history:
|
131 |
+
st.write(line)
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
main()
|