Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
|
5 |
+
# Check if CUDA is available, and choose device accordingly
|
6 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
8 |
+
|
9 |
+
# Load the model and tokenizer
|
10 |
+
model_id = "openai/whisper-large-v3"
|
11 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
12 |
+
model_id, torch_dtype=torch_dtype, use_safetensors=True
|
13 |
+
)
|
14 |
+
model.to(device)
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
+
|
17 |
+
# Define a function to transcribe audio
|
18 |
+
pipe = pipeline(
|
19 |
+
"automatic-speech-recognition",
|
20 |
+
model=model,
|
21 |
+
tokenizer=processor.tokenizer,
|
22 |
+
feature_extractor=processor.feature_extractor,
|
23 |
+
max_new_tokens=128,
|
24 |
+
chunk_length_s=30,
|
25 |
+
batch_size=16,
|
26 |
+
return_timestamps=True,
|
27 |
+
torch_dtype=torch_dtype,
|
28 |
+
device=device,
|
29 |
+
)
|
30 |
+
def transcribe_audio(audio_file):
|
31 |
+
# Use the pipeline to transcribe audio
|
32 |
+
result = pipe(audio_file, generate_kwargs={"language": "english"})
|
33 |
+
transcribed_text = result["text"]
|
34 |
+
return transcribed_text
|
35 |
+
|
36 |
+
# Create a Gradio interface
|
37 |
+
audio_input = gr.inputs.Audio(label="Upload Audio File")
|
38 |
+
output_text = gr.outputs.Textbox(label="Transcribed Text")
|
39 |
+
|
40 |
+
# Instantiate the Gradio interface
|
41 |
+
app = gr.Interface(
|
42 |
+
fn=transcribe_audio,
|
43 |
+
inputs=audio_input,
|
44 |
+
outputs=[
|
45 |
+
"textbox"
|
46 |
+
],
|
47 |
+
title="Audio Transcription with Whisper Model",
|
48 |
+
description="Upload an audio file to transcribe it into text using the Whisper model.",
|
49 |
+
theme="compact"
|
50 |
+
)
|
51 |
+
|
52 |
+
# Launch the Gradio interface
|
53 |
+
app.launch(debug=True,inline=False)
|