File size: 6,786 Bytes
c14f8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import transformers
from transformers import pipeline
import PyPDF2
import pdfplumber
from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
import re
import torch
from datasets import load_dataset
import soundfile as sf
from IPython.display import Audio
import numpy as np
from datasets import load_dataset
import sentencepiece as spm
import os
import tempfile



def text_extraction(element):
    # Extracting the text from the in-line text element
    line_text = element.get_text()

    # Find the formats of the text
    # Initialize the list with all the formats that appeared in the line of text
    line_formats = []
    for text_line in element:
        if isinstance(text_line, LTTextContainer):
            # Iterating through each character in the line of text
            for character in text_line:
                if isinstance(character, LTChar):
                    # Append the font name of the character
                    line_formats.append(character.fontname)
                    # Append the font size of the character
                    line_formats.append(character.size)
    # Find the unique font sizes and names in the line
    format_per_line = list(set(line_formats))

    # Return a tuple with the text in each line along with its format
    return (line_text, format_per_line)

def read_pdf(pdf_pathy):
  # create a PDF file object
  pdfFileObj = open(pdf_pathy, 'rb')
  # create a PDF reader object
  pdfReaded = PyPDF2.PdfReader(pdfFileObj)

  # Create the dictionary to extract text from each image
  text_per_pagy = {}
  # We extract the pages from the PDF
  for pagenum, page in enumerate(extract_pages(pdf_pathy)):
      print("Elaborating Page_" +str(pagenum))
      # Initialize the variables needed for the text extraction from the page
      pageObj = pdfReaded.pages[pagenum]
      page_text = []
      line_format = []
      page_content = []

      # Open the pdf file
      pdf = pdfplumber.open(pdf_pathy)


      # Find all the elements
      page_elements = [(element.y1, element) for element in page._objs]
      # Sort all the elements as they appear in the page
      page_elements.sort(key=lambda a: a[0], reverse=True)

      # Find the elements that composed a page
      for i,component in enumerate(page_elements):
          # Extract the position of the top side of the element in the PDF
          pos= component[0]
          # Extract the element of the page layout
          element = component[1]

          # Check if the element is a text element
          if isinstance(element, LTTextContainer):
              # Check if the text appeared in a table
                  # Use the function to extract the text and format for each text element
                  (line_text, format_per_line) = text_extraction(element)
                  # Append the text of each line to the page text
                  page_text.append(line_text)
                  # Append the format for each line containing text
                  line_format.append(format_per_line)
                  page_content.append(line_text)
          

      # Create the key of the dictionary
      dctkey = 'Page_'+str(pagenum)
      # Add the list of list as the value of the page key
      text_per_pagy[dctkey]= [page_text, line_format, page_content]

  # Closing the pdf file object
  pdfFileObj.close()


  return text_per_pagy

#performing a cleaning of the contents
import re

def clean_text(text):
    # remove extra spaces
    text = re.sub(r'\s+', ' ', text)

    return text.strip()


def extract_abstract(text_per_pagy):
    abstract_text = ""
    
    #iterate through each page in the extracted text dictionary
    for page_num, page_text in text_per_pagy.items():
        if page_text:
           # Replace hyphens used for line breaks
            page_text = page_text.replace("- ", "")
           
            # Looking for the start of the abstract
            start_index = page_text.find("Abstract")
            if start_index != -1:
                # Adjust the start index to exclude the word "Abstract" itself
                # The length of "Abstract" is 8 characters; we also add 1 to skip the space after it
                start_index += len("Abstract") + 1

                # Searching the possible end markers of the abstract
                end_markers = ["Introduction", "Summary", "Overview", "Background"]
                end_index = -1

                for marker in end_markers:
                    temp_index = page_text.find(marker, start_index)
                    if temp_index != -1:
                        end_index = temp_index
                        break

                # If no end marker found, take entire text after "Abstract"
                if end_index == -1:
                    end_index = len(page_text)

                # Extract the abstract text
                abstract = page_text[start_index:end_index].strip()

                # Add the abstract to the complete text
                abstract_text += " " + abstract

                break

    return abstract_text


def main_function(uploaded_filepath):
    #a control to see if there is a file uploaded
    if uploaded_filepath is None:
        return "No file loaded", None

    #read and process the file
    text_per_pagy = read_pdf(uploaded_filepath)

    #cleaning the text and getting the abstract
    for key, value in text_per_pagy.items():
        cleaned_text = clean_text(' '.join(value[0]))
        text_per_pagy[key] = cleaned_text
    abstract_text = extract_abstract(text_per_pagy)

    #abstract summary
    summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
    summary = summarizer(abstract_text, max_length=50, min_length=30, do_sample=False)[0]['summary_text']

    #generating the audio from the text, with my pipeline and model
    synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
    embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
    speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
    speech = synthesiser(summary, forward_params={"speaker_embeddings": speaker_embedding})

    #saving the audio in a temp file
    audio_file_path = "summary.wav"
    sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])

    #the function returns the 2 pieces we need
    return summary, audio_file_path


iface = gr.Interface(
    fn=main_function,
    inputs=gr.File(type="filepath"),  # Cambiato da "pdf" a "file"
    outputs=[gr.Textbox(label="Summary Text"), gr.Audio(label="Summary Audio", type="filepath")]
)

# Avvia l'app
if __name__ == "__main__":
    iface.launch()