Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
+
import PyPDF2
|
5 |
+
import pdfplumber
|
6 |
+
from pdfminer.high_level import extract_pages, extract_text
|
7 |
+
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
|
8 |
+
import re
|
9 |
+
import torch
|
10 |
+
from datasets import load_dataset
|
11 |
+
import soundfile as sf
|
12 |
+
from IPython.display import Audio
|
13 |
+
import numpy as np
|
14 |
+
from datasets import load_dataset
|
15 |
+
import sentencepiece as spm
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def text_extraction(element):
|
20 |
+
# Extracting the text from the in-line text element
|
21 |
+
line_text = element.get_text()
|
22 |
+
|
23 |
+
# Find the formats of the text
|
24 |
+
# Initialize the list with all the formats that appeared in the line of text
|
25 |
+
line_formats = []
|
26 |
+
for text_line in element:
|
27 |
+
if isinstance(text_line, LTTextContainer):
|
28 |
+
# Iterating through each character in the line of text
|
29 |
+
for character in text_line:
|
30 |
+
if isinstance(character, LTChar):
|
31 |
+
# Append the font name of the character
|
32 |
+
line_formats.append(character.fontname)
|
33 |
+
# Append the font size of the character
|
34 |
+
line_formats.append(character.size)
|
35 |
+
# Find the unique font sizes and names in the line
|
36 |
+
format_per_line = list(set(line_formats))
|
37 |
+
|
38 |
+
# Return a tuple with the text in each line along with its format
|
39 |
+
return (line_text, format_per_line)
|
40 |
+
|
41 |
+
def read_pdf(pdf_pathy):
|
42 |
+
# create a PDF file object
|
43 |
+
pdfFileObj = open(pdf_pathy, 'rb')
|
44 |
+
# create a PDF reader object
|
45 |
+
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
|
46 |
+
|
47 |
+
# Create the dictionary to extract text from each image
|
48 |
+
text_per_pagy = {}
|
49 |
+
# We extract the pages from the PDF
|
50 |
+
for pagenum, page in enumerate(extract_pages(pdf_pathy)):
|
51 |
+
print("Elaborating Page_" +str(pagenum))
|
52 |
+
# Initialize the variables needed for the text extraction from the page
|
53 |
+
pageObj = pdfReaded.pages[pagenum]
|
54 |
+
page_text = []
|
55 |
+
line_format = []
|
56 |
+
page_content = []
|
57 |
+
|
58 |
+
# Open the pdf file
|
59 |
+
pdf = pdfplumber.open(pdf_pathy)
|
60 |
+
|
61 |
+
|
62 |
+
# Find all the elements
|
63 |
+
page_elements = [(element.y1, element) for element in page._objs]
|
64 |
+
# Sort all the elements as they appear in the page
|
65 |
+
page_elements.sort(key=lambda a: a[0], reverse=True)
|
66 |
+
|
67 |
+
# Find the elements that composed a page
|
68 |
+
for i,component in enumerate(page_elements):
|
69 |
+
# Extract the position of the top side of the element in the PDF
|
70 |
+
pos= component[0]
|
71 |
+
# Extract the element of the page layout
|
72 |
+
element = component[1]
|
73 |
+
|
74 |
+
# Check if the element is a text element
|
75 |
+
if isinstance(element, LTTextContainer):
|
76 |
+
# Check if the text appeared in a table
|
77 |
+
# Use the function to extract the text and format for each text element
|
78 |
+
(line_text, format_per_line) = text_extraction(element)
|
79 |
+
# Append the text of each line to the page text
|
80 |
+
page_text.append(line_text)
|
81 |
+
# Append the format for each line containing text
|
82 |
+
line_format.append(format_per_line)
|
83 |
+
page_content.append(line_text)
|
84 |
+
|
85 |
+
|
86 |
+
# Create the key of the dictionary
|
87 |
+
dctkey = 'Page_'+str(pagenum)
|
88 |
+
# Add the list of list as the value of the page key
|
89 |
+
text_per_pagy[dctkey]= [page_text, line_format, page_content]
|
90 |
+
|
91 |
+
# Closing the pdf file object
|
92 |
+
pdfFileObj.close()
|
93 |
+
|
94 |
+
|
95 |
+
return text_per_pagy
|
96 |
+
|
97 |
+
#performing a cleaning of the contents
|
98 |
+
import re
|
99 |
+
|
100 |
+
def clean_text(text):
|
101 |
+
# remove extra spaces
|
102 |
+
text = re.sub(r'\s+', ' ', text)
|
103 |
+
|
104 |
+
return text.strip()
|
105 |
+
|
106 |
+
# using the function on the text_per_page_1 dictionary
|
107 |
+
for key, value in text_per_pagy.items():
|
108 |
+
cleaned_text = clean_text(' '.join(value[0])) # value[0] contains the text
|
109 |
+
text_per_pagy[key] = cleaned_text
|
110 |
+
|
111 |
+
# Now text_per_pagy is clean
|
112 |
+
|
113 |
+
def extract_abstract(text_per_pagy):
|
114 |
+
abstract_text = ""
|
115 |
+
|
116 |
+
#iterate through each page in the extracted text dictionary
|
117 |
+
for page_num, page_text in text_per_pagy.items():
|
118 |
+
if page_text:
|
119 |
+
# Replace hyphens used for line breaks
|
120 |
+
page_text = page_text.replace("- ", "")
|
121 |
+
|
122 |
+
# Looking for the start of the abstract
|
123 |
+
start_index = page_text.find("Abstract")
|
124 |
+
if start_index != -1:
|
125 |
+
# Adjust the start index to exclude the word "Abstract" itself
|
126 |
+
# The length of "Abstract" is 8 characters; we also add 1 to skip the space after it
|
127 |
+
start_index += len("Abstract") + 1
|
128 |
+
|
129 |
+
# Searching the possible end markers of the abstract
|
130 |
+
end_markers = ["Introduction", "Summary", "Overview", "Background"]
|
131 |
+
end_index = -1
|
132 |
+
|
133 |
+
for marker in end_markers:
|
134 |
+
temp_index = page_text.find(marker, start_index)
|
135 |
+
if temp_index != -1:
|
136 |
+
end_index = temp_index
|
137 |
+
break
|
138 |
+
|
139 |
+
# If no end marker found, take entire text after "Abstract"
|
140 |
+
if end_index == -1:
|
141 |
+
end_index = len(page_text)
|
142 |
+
|
143 |
+
# Extract the abstract text
|
144 |
+
abstract = page_text[start_index:end_index].strip()
|
145 |
+
|
146 |
+
# Add the abstract to the complete text
|
147 |
+
abstract_text += " " + abstract
|
148 |
+
|
149 |
+
break
|
150 |
+
|
151 |
+
return abstract_text
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def main_function(pdf_file):
|
156 |
+
# Converti il PDF in testo
|
157 |
+
text_per_pagy = read_pdf(pdf_file.name)
|
158 |
+
|
159 |
+
# Pulisci e estrai l'abstract
|
160 |
+
for key, value in text_per_pagy.items():
|
161 |
+
cleaned_text = clean_text(' '.join(value[0]))
|
162 |
+
text_per_pagy[key] = cleaned_text
|
163 |
+
abstract_text = extract_abstract(text_per_pagy)
|
164 |
+
|
165 |
+
# Riassumi l'abstract
|
166 |
+
summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify-elife")
|
167 |
+
summary = summarizer(abstract_text, max_length=50, min_length=30, do_sample=False)[0]['summary_text']
|
168 |
+
|
169 |
+
# Genera l'audio dal riassunto
|
170 |
+
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
171 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
172 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
173 |
+
speech = synthesiser(summary, forward_params={"speaker_embeddings": speaker_embedding})
|
174 |
+
|
175 |
+
# Salva l'audio in un file temporaneo
|
176 |
+
audio_file_path = "summary.wav"
|
177 |
+
sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])
|
178 |
+
|
179 |
+
# Restituisci testo e audio
|
180 |
+
return summary, audio_file_path
|
181 |
+
|
182 |
+
# Crea l'interfaccia Gradio
|
183 |
+
iface = gr.Interface(
|
184 |
+
fn=main_function,
|
185 |
+
inputs=gr.inputs.File(type="pdf"),
|
186 |
+
outputs=[gr.outputs.Textbox(label="Summary Text"), gr.outputs.Audio(label="Summary Audio", type="file")]
|
187 |
+
)
|
188 |
+
|
189 |
+
# Avvia l'app
|
190 |
+
if __name__ == "__main__":
|
191 |
+
iface.launch()
|