testing deployment
Browse files
app.py
CHANGED
@@ -1,65 +1,47 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"""
|
45 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
-
"""
|
47 |
-
demo = gr.ChatInterface(
|
48 |
-
respond,
|
49 |
-
additional_inputs=[
|
50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
-
gr.Slider(
|
54 |
-
minimum=0.1,
|
55 |
-
maximum=1.0,
|
56 |
-
value=0.95,
|
57 |
-
step=0.05,
|
58 |
-
label="Top-p (nucleus sampling)",
|
59 |
-
),
|
60 |
-
],
|
61 |
)
|
62 |
-
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
-
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
import gradio as gr
|
4 |
+
from huggingface_hub import login
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
hf_token = os.getenv("llama")
|
8 |
+
login(hf_token)
|
9 |
+
# Model and adapter paths
|
10 |
+
model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Base model
|
11 |
+
adapter_name = "Alkhalaf/lora_model" # LoRA model adapter
|
12 |
+
|
13 |
+
# Load tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
15 |
+
|
16 |
+
# Load the LoRA adapter configuration
|
17 |
+
peft_config = PeftConfig.from_pretrained(adapter_name, use_auth_token=True)
|
18 |
+
|
19 |
+
# Load the base model
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
peft_config.base_model_name_or_path,
|
22 |
+
|
23 |
+
#torch_dtype=torch.float16
|
24 |
+
|
25 |
+
|
26 |
+
)
|
27 |
+
# Apply the LoRA adapter to the base model
|
28 |
+
model = PeftModel.from_pretrained(base_model, adapter_name, use_auth_token=True)
|
29 |
+
|
30 |
+
# Define prediction function
|
31 |
+
def predict(input_text):
|
32 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
33 |
+
outputs = model.generate(inputs["input_ids"], max_length=150)
|
34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
return response
|
36 |
+
|
37 |
+
# Gradio Interface
|
38 |
+
interface = gr.Interface(
|
39 |
+
fn=predict,
|
40 |
+
inputs="text",
|
41 |
+
outputs="text",
|
42 |
+
title="Conversational AI with LoRA",
|
43 |
+
description="Interact with a fine-tuned LoRA model for conversational AI."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
+
interface.launch(share=True)
|