Alkhalaf commited on
Commit
6a8f69a
·
verified ·
1 Parent(s): abc3266

testing deployment

Browse files
Files changed (1) hide show
  1. app.py +43 -61
app.py CHANGED
@@ -1,65 +1,47 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- client = InferenceClient("Alkhalaf/test")
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
-
44
- """
45
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
- """
47
- demo = gr.ChatInterface(
48
- respond,
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
-
63
 
64
  if __name__ == "__main__":
65
- demo.launch()
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ from peft import PeftModel, PeftConfig
3
  import gradio as gr
4
+ from huggingface_hub import login
5
+ import torch
6
+ import os
7
+ hf_token = os.getenv("llama")
8
+ login(hf_token)
9
+ # Model and adapter paths
10
+ model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Base model
11
+ adapter_name = "Alkhalaf/lora_model" # LoRA model adapter
12
+
13
+ # Load tokenizer
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
15
+
16
+ # Load the LoRA adapter configuration
17
+ peft_config = PeftConfig.from_pretrained(adapter_name, use_auth_token=True)
18
+
19
+ # Load the base model
20
+ base_model = AutoModelForCausalLM.from_pretrained(
21
+ peft_config.base_model_name_or_path,
22
+
23
+ #torch_dtype=torch.float16
24
+
25
+
26
+ )
27
+ # Apply the LoRA adapter to the base model
28
+ model = PeftModel.from_pretrained(base_model, adapter_name, use_auth_token=True)
29
+
30
+ # Define prediction function
31
+ def predict(input_text):
32
+ inputs = tokenizer(input_text, return_tensors="pt")
33
+ outputs = model.generate(inputs["input_ids"], max_length=150)
34
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
35
+ return response
36
+
37
+ # Gradio Interface
38
+ interface = gr.Interface(
39
+ fn=predict,
40
+ inputs="text",
41
+ outputs="text",
42
+ title="Conversational AI with LoRA",
43
+ description="Interact with a fine-tuned LoRA model for conversational AI."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  )
 
45
 
46
  if __name__ == "__main__":
47
+ interface.launch(share=True)