Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,10 @@ model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Base model
|
|
11 |
adapter_name = "Alkhalaf/lora_model" # LoRA model adapter
|
12 |
|
13 |
# Load tokenizer
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
15 |
|
16 |
# Load the LoRA adapter configuration
|
17 |
-
peft_config = PeftConfig.from_pretrained(adapter_name,
|
18 |
|
19 |
# Load the base model
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(
|
@@ -26,7 +26,7 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
26 |
|
27 |
)
|
28 |
# Apply the LoRA adapter to the base model
|
29 |
-
model = PeftModel.from_pretrained(base_model, adapter_name,
|
30 |
|
31 |
# Define prediction function
|
32 |
def predict(input_text):
|
|
|
11 |
adapter_name = "Alkhalaf/lora_model" # LoRA model adapter
|
12 |
|
13 |
# Load tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
15 |
|
16 |
# Load the LoRA adapter configuration
|
17 |
+
peft_config = PeftConfig.from_pretrained(adapter_name, token=hf_token)
|
18 |
|
19 |
# Load the base model
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
26 |
|
27 |
)
|
28 |
# Apply the LoRA adapter to the base model
|
29 |
+
model = PeftModel.from_pretrained(base_model, adapter_name, token=hf_token)
|
30 |
|
31 |
# Define prediction function
|
32 |
def predict(input_text):
|