fcernafukuzaki commited on
Commit
d8cae64
1 Parent(s): e986d84

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -28
app.py CHANGED
@@ -1,31 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # -*- coding: utf-8 -*-
2
  """Deploy Barcelo demo.ipynb
3
-
4
  Automatically generated by Colaboratory.
5
-
6
  Original file is located at
7
  https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
8
-
9
  ![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
10
-
11
  # Modelo
12
-
13
  YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
14
-
15
-
16
  ## Gradio Inferencia
17
-
18
  ![](https://i.ibb.co/982NS6m/header.png)
19
-
20
  Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
21
-
22
-
23
  ----------------------------------------------------------------------
24
-
25
  YOLOv5 Gradio demo
26
-
27
  *Author: Ultralytics LLC and Gradio*
28
-
29
  # C贸digo
30
  """
31
 
@@ -45,13 +69,13 @@ torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee056
45
 
46
  # Model
47
  #model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
 
48
  #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab
49
- #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
50
  #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo
51
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True, trust_repo=True)
52
 
53
  HF_TOKEN = os.getenv("ZIKA_TOKEN_WRITE")
54
- hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "demo-iazika-flags")
55
 
56
  def getQuantity(string):
57
  contador_raw = ''.join(string.split(" ")[3:])
@@ -92,7 +116,8 @@ def arrayLista(resultado):
92
  def yolo(size, iou, conf, im):
93
  '''Wrapper fn for gradio'''
94
  g = (int(size) / max(im.size)) # gain
95
- im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
 
96
 
97
  model.iou = iou
98
 
@@ -118,14 +143,14 @@ in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umb
118
  in4 = gr.inputs.Image(type='pil', label="Original Image")
119
 
120
  out2 = gr.outputs.Image(type="pil", label="YOLOv5")
121
- out3 = gr.outputs.Dataframe(label="Descripci贸n", headers=['Cantidad','Especie'], type="pandas")
122
  out4 = gr.outputs.JSON(label="JSON")
123
  #-------------- Text-----
124
  title = 'Trampas Barcel贸'
125
  description = """
126
  <p>
127
  <center>
128
- Sistemas de Desarrollado por Subsecretar铆a de Innovaci贸n del Municipio de Vicente L贸pez. Advertencia solo usar fotos provenientes de las trampas Barcel贸, no de celular o foto de internet.
129
  <img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/>
130
  </center>
131
  </p>
@@ -146,15 +171,10 @@ iface = gr.Interface(yolo,
146
  flagging_options=["Correcto", "Incorrecto", "Casi correcto", "Error", "Otro"],
147
  #flagging_callback=hf_writer
148
  )
149
-
150
- #iface.launch(cache_examples=True, enable_queue=True, debug=True)
151
- iface.launch(enable_queue=True)
152
- #iface.launch(cache_examples=True, debug=True)
153
 
154
  """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
155
-
156
-
157
  ## Citation
158
-
159
  [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
160
- """
 
1
+ Hugging Face's logo
2
+ Hugging Face
3
+ Search models, datasets, users...
4
+ Models
5
+ Datasets
6
+ Spaces
7
+ Docs
8
+ Solutions
9
+ Pricing
10
+
11
+
12
+
13
+ Spaces:
14
+
15
+ Municipalidad-de-Vicente-Lopez
16
+ /
17
+ Trampas_Barcelo
18
+
19
+
20
+ like
21
+ 0
22
+ App
23
+ Files
24
+ Community
25
+ Trampas_Barcelo
26
+ /
27
+ app.py
28
+ cesar's picture
29
+ cesar
30
+ Update app.py
31
+ e3b3548
32
+ 34 minutes ago
33
+ raw
34
+ history
35
+ blame
36
+ contribute
37
+ delete
38
+ 6.62 kB
39
  # -*- coding: utf-8 -*-
40
  """Deploy Barcelo demo.ipynb
 
41
  Automatically generated by Colaboratory.
 
42
  Original file is located at
43
  https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
 
44
  ![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
 
45
  # Modelo
 
46
  YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
 
 
47
  ## Gradio Inferencia
 
48
  ![](https://i.ibb.co/982NS6m/header.png)
 
49
  Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
 
 
50
  ----------------------------------------------------------------------
 
51
  YOLOv5 Gradio demo
 
52
  *Author: Ultralytics LLC and Gradio*
 
53
  # C贸digo
54
  """
55
 
 
69
 
70
  # Model
71
  #model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
72
+
73
  #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab
74
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
75
  #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo
 
76
 
77
  HF_TOKEN = os.getenv("ZIKA_TOKEN_WRITE")
78
+ hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Municipalidad-de-Vicente-Lopez/Trampas_Barcelo_dataset")
79
 
80
  def getQuantity(string):
81
  contador_raw = ''.join(string.split(" ")[3:])
 
116
  def yolo(size, iou, conf, im):
117
  '''Wrapper fn for gradio'''
118
  g = (int(size) / max(im.size)) # gain
119
+ im = im.resize((int(x * g) for x in im.size), Image.LANCZOS) # resize with antialiasing
120
+
121
 
122
  model.iou = iou
123
 
 
143
  in4 = gr.inputs.Image(type='pil', label="Original Image")
144
 
145
  out2 = gr.outputs.Image(type="pil", label="YOLOv5")
146
+ out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'])
147
  out4 = gr.outputs.JSON(label="JSON")
148
  #-------------- Text-----
149
  title = 'Trampas Barcel贸'
150
  description = """
151
  <p>
152
  <center>
153
+ Sistemas de Desarrollado por Subsecretar铆a de Modernizaci贸n del Municipio de Vicente L贸pez. Advertencia solo usar fotos provenientes de las trampas Barcel贸, no de celular o foto de internet.
154
  <img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/>
155
  </center>
156
  </p>
 
171
  flagging_options=["Correcto", "Incorrecto", "Casi correcto", "Error", "Otro"],
172
  #flagging_callback=hf_writer
173
  )
174
+
175
+ iface.launch(enable_queue=True, debug=True)
 
 
176
 
177
  """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
 
 
178
  ## Citation
 
179
  [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
180
+ """