# -*- coding: utf-8 -*- """Deploy Barcelo demo.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9 ![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png) # Modelo YOLO es una familia de modelos de detección de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. ## Gradio Inferencia ![](https://i.ibb.co/982NS6m/header.png) Este Notebook se acelera opcionalmente con un entorno de ejecución de GPU ---------------------------------------------------------------------- YOLOv5 Gradio demo *Author: Ultralytics LLC and Gradio* # Código """ #!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies import os import gradio as gr import torch from PIL import Image # Images torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg') torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg') # Model #model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo HF_TOKEN = os.getenv("HF_TOKEN") hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "demo-iazika-flags", "datasets/AllAideas/demo-iazika-flags") def yolo(size, iou, conf, im): '''Wrapper fn for gradio''' g = (int(size) / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize model.iou = iou model.conf = conf results2 = model(im) # inference results2.render() # updates results.imgs with boxes and labels return Image.fromarray(results2.ims[0]) #------------ Interface------------- in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", default='640', type='value') in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold') in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold') in4 = gr.inputs.Image(type='pil', label="Original Image") out2 = gr.outputs.Image(type="pil", label="YOLOv5") #-------------- Text----- title = 'Trampas Barceló' description = """

Sistemas de Desarrollado por Subsecretaría de Innovación del Municipio de Vicente López. Advertencia solo usar fotos provenientes de las trampas Barceló, no de celular o foto de internet. logo

""" article ="

Para mas info, clik para ir al white paper

Google Colab Demo

Repo Github

" examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']] iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=out2, title=title, description=description, article=article, examples=examples, theme="huggingface", analytics_enabled=False, allow_flagging="manual", flagging_options=["correcto", "incorrecto", "casi correcto", "error", "otro"], flagging_callback=hf_writer ).launch(enable_queue=True,debug=True) iface.launch() """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36). ## Citation [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) """