Upload 2 files
Browse files- app.py +67 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import sklearn
|
6 |
+
import gradio as gr
|
7 |
+
from sklearn import preprocessing
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.ensemble import RandomForestClassifier
|
10 |
+
from sklearn.metrics import accuracy_score
|
11 |
+
|
12 |
+
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
|
13 |
+
data.head()
|
14 |
+
|
15 |
+
def encode_ages(df): # Binning ages
|
16 |
+
df.Age = df.Age.fillna(-0.5)
|
17 |
+
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
18 |
+
categories = pd.cut(df.Age, bins, labels=False)
|
19 |
+
df.Age = categories
|
20 |
+
return df
|
21 |
+
|
22 |
+
def encode_fares(df): # Binning fares
|
23 |
+
df.Fare = df.Fare.fillna(-0.5)
|
24 |
+
bins = (-1, 0, 8, 15, 31, 1000)
|
25 |
+
categories = pd.cut(df.Fare, bins, labels=False)
|
26 |
+
df.Fare = categories
|
27 |
+
return df
|
28 |
+
|
29 |
+
def encode_sex(df):
|
30 |
+
mapping = {"male": 0, "female": 1}
|
31 |
+
return df.replace({'Sex': mapping})
|
32 |
+
|
33 |
+
def transform_features(df):
|
34 |
+
df = encode_ages(df)
|
35 |
+
df = encode_fares(df)
|
36 |
+
df = encode_sex(df)
|
37 |
+
return df
|
38 |
+
|
39 |
+
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
|
40 |
+
train = transform_features(train)
|
41 |
+
train.head()
|
42 |
+
|
43 |
+
|
44 |
+
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
|
45 |
+
y_all = train['Survived']
|
46 |
+
|
47 |
+
num_test = 0.20
|
48 |
+
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
|
49 |
+
|
50 |
+
clf = RandomForestClassifier()
|
51 |
+
clf.fit(X_train, y_train)
|
52 |
+
predictions = clf.predict(X_test)
|
53 |
+
|
54 |
+
def predict_survival(sex, age, fare):
|
55 |
+
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
|
56 |
+
df = encode_sex(df)
|
57 |
+
df = encode_fares(df)
|
58 |
+
df = encode_ages(df)
|
59 |
+
pred = clf.predict_proba(df)[0]
|
60 |
+
return {'Muere': float(pred[0]), 'Sobrevive': float(pred[1])}
|
61 |
+
|
62 |
+
sex = gr.inputs.Radio(['female', 'male'], label="Sexo")
|
63 |
+
age = gr.inputs.Slider(minimum=0, maximum=120, default=22, label="Edad")
|
64 |
+
fare = gr.inputs.Slider(minimum=0, maximum=200, default=100, label="Clase")
|
65 |
+
|
66 |
+
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
|
67 |
+
title="Sobrevivientes del Titanic", description="Analicemos los sobreviventes de este caso y comprobemos").launch();
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
scikit-learn
|
4 |
+
|