cesar commited on
Commit
a1cfbdd
·
1 Parent(s): 35c7d09

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +67 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it
2
+
3
+ import pandas as pd
4
+ import numpy as np
5
+ import sklearn
6
+ import gradio as gr
7
+ from sklearn import preprocessing
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.ensemble import RandomForestClassifier
10
+ from sklearn.metrics import accuracy_score
11
+
12
+ data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
13
+ data.head()
14
+
15
+ def encode_ages(df): # Binning ages
16
+ df.Age = df.Age.fillna(-0.5)
17
+ bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
18
+ categories = pd.cut(df.Age, bins, labels=False)
19
+ df.Age = categories
20
+ return df
21
+
22
+ def encode_fares(df): # Binning fares
23
+ df.Fare = df.Fare.fillna(-0.5)
24
+ bins = (-1, 0, 8, 15, 31, 1000)
25
+ categories = pd.cut(df.Fare, bins, labels=False)
26
+ df.Fare = categories
27
+ return df
28
+
29
+ def encode_sex(df):
30
+ mapping = {"male": 0, "female": 1}
31
+ return df.replace({'Sex': mapping})
32
+
33
+ def transform_features(df):
34
+ df = encode_ages(df)
35
+ df = encode_fares(df)
36
+ df = encode_sex(df)
37
+ return df
38
+
39
+ train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
40
+ train = transform_features(train)
41
+ train.head()
42
+
43
+
44
+ X_all = train.drop(['Survived', 'PassengerId'], axis=1)
45
+ y_all = train['Survived']
46
+
47
+ num_test = 0.20
48
+ X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
49
+
50
+ clf = RandomForestClassifier()
51
+ clf.fit(X_train, y_train)
52
+ predictions = clf.predict(X_test)
53
+
54
+ def predict_survival(sex, age, fare):
55
+ df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
56
+ df = encode_sex(df)
57
+ df = encode_fares(df)
58
+ df = encode_ages(df)
59
+ pred = clf.predict_proba(df)[0]
60
+ return {'Muere': float(pred[0]), 'Sobrevive': float(pred[1])}
61
+
62
+ sex = gr.inputs.Radio(['female', 'male'], label="Sexo")
63
+ age = gr.inputs.Slider(minimum=0, maximum=120, default=22, label="Edad")
64
+ fare = gr.inputs.Slider(minimum=0, maximum=200, default=100, label="Clase")
65
+
66
+ gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
67
+ title="Sobrevivientes del Titanic", description="Analicemos los sobreviventes de este caso y comprobemos").launch();
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ pandas
2
+ numpy
3
+ scikit-learn
4
+