Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import torch | |
import os | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
# Setup class names | |
with open('class_names.txt', 'r') as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
### 2. Model and transforms preparation ### | |
# Create model and transforms | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=len(class_names), | |
) | |
# Load save weights | |
effnetb2.load_state_dict(torch.load('09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', map_location=torch.device("cpu"))) # load the model to the CPU | |
### 3. Predict function ### | |
def predict(img) -> tuple[dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th index | |
# Put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logits into probabilities | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = { | |
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) | |
} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "FoodVision BIG πππͺ" | |
descripton = "An EfficientNetB2 Feature Extractor computer vision model to classify 101 classes of food from the Food101 dataset." | |
article = "Created at 09. PyTorch Model Deployment." | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to outputs | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=descripton, | |
article=article) | |
# Launch Demo! | |
demo.launch() | |