foodvision_big / app.py
AllanK24's picture
Updated paths in app.py
a6a0a86 verified
### 1. Imports and class names setup ###
import gradio as gr
import torch
import os
from model import create_effnetb2_model
from timeit import default_timer as timer
# Setup class names
with open('class_names.txt', 'r') as f:
class_names = [food_name.strip() for food_name in f.readlines()]
### 2. Model and transforms preparation ###
# Create model and transforms
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=len(class_names),
)
# Load save weights
effnetb2.load_state_dict(torch.load('09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', map_location=torch.device("cpu"))) # load the model to the CPU
### 3. Predict function ###
def predict(img) -> tuple[dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB2
img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th index
# Put model into eval mode, make prediction
effnetb2.eval()
with torch.inference_mode():
# Pass transformed image through the model and turn the prediction logits into probabilities
pred_probs = torch.softmax(effnetb2(img), dim=1)
# Create a prediction label and prediction probability dictionary
pred_labels_and_probs = {
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
}
# Calculate pred time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article
title = "FoodVision BIG πŸ”πŸ‘πŸ’ͺ"
descripton = "An EfficientNetB2 Feature Extractor computer vision model to classify 101 classes of food from the Food101 dataset."
article = "Created at 09. PyTorch Model Deployment."
# Create example list
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # maps inputs to outputs
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=5, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=descripton,
article=article)
# Launch Demo!
demo.launch()