foodvision_big / model.py
AllanK24's picture
FoodVision Big all files added
5cf6a0b verified
raw
history blame contribute delete
950 Bytes
import torch
import torchvision
from torch import nn
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_effnetb2_model(num_classes:int=3, # default output classes = 3 (pizza, steak, sushi)
seed:int=42):
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
weights = torchvision.models.efficientnet.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet.efficientnet_b2(weights=weights).to(device)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes, bias=True)
).to(device)
return model, transforms