### 1. Imports and class names setup ### import gradio as gr import torch import os from model import create_effnetb2_model from timeit import default_timer as timer # Setup class names with open('class_names.txt', 'r') as f: class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model and transforms effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=len(class_names), ) # Load save weights effnetb2.load_state_dict(torch.load('09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', map_location=torch.device("cpu"))) # load the model to the CPU ### 3. Predict function ### def predict(img) -> tuple[dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th index # Put model into eval mode, make prediction effnetb2.eval() with torch.inference_mode(): # Pass transformed image through the model and turn the prediction logits into probabilities pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = { class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) } # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article title = "FoodVision BIG 🍔👁💪" descripton = "An EfficientNetB2 Feature Extractor computer vision model to classify 101 classes of food from the Food101 dataset." article = "Created at 09. PyTorch Model Deployment." # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # maps inputs to outputs inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=descripton, article=article) # Launch Demo! demo.launch()