from fastapi import FastAPI | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
app = FastAPI() | |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
index = faiss.IndexFlatL2(384) # 384 is the dimensionality of the MiniLM model | |
def greet_json(): | |
return {"Hello": "World!"} | |
def embed_string(text: str): | |
embedding = model.encode([text]) | |
index.add(np.array(embedding)) | |
return {"message": "String embedded and added to FAISS database"} | |