Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import numpy as np | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from concrete.ml.sklearn import RandomForestClassifier as ConcreteRandomForestClassifier | |
import gradio as gr | |
from utils import ( | |
CLIENT_DIR, | |
CURRENT_DIR, | |
DEPLOYMENT_DIR, | |
INPUT_BROWSER_LIMIT, | |
KEYS_DIR, | |
SERVER_URL, | |
clean_directory, | |
) | |
import requests | |
import subprocess | |
import time | |
from typing import Dict, List, Tuple | |
from concrete.ml.deployment import FHEModelClient | |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) | |
time.sleep(3) | |
current_dir = os.path.dirname(os.path.realpath(__file__)) | |
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv")) | |
def is_none(obj) -> bool: | |
""" | |
Check if the object is None. | |
Args: | |
obj (any): The input to be checked. | |
Returns: | |
bool: True if the object is None or empty, False otherwise. | |
""" | |
return obj is None or (obj is not None and len(obj) < 1) | |
def encode_age(df): | |
df.Age = df.Age.fillna(-0.5) | |
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120) | |
categories = pd.cut(df.Age, bins, labels=False) | |
df.Age = categories | |
return df | |
def encode_fare(df): | |
df.Fare = df.Fare.fillna(-0.5) | |
bins = (-1, 0, 8, 15, 31, 1000) | |
categories = pd.cut(df.Fare, bins, labels=False) | |
df.Fare = categories | |
return df | |
def encode_df(df): | |
df = encode_age(df) | |
df = encode_fare(df) | |
sex_mapping = {"male": 0, "female": 1} | |
df = df.replace({"Sex": sex_mapping}) | |
embark_mapping = {"S": 1, "C": 2, "Q": 3} | |
df = df.replace({"Embarked": embark_mapping}) | |
df.Embarked = df.Embarked.fillna(0) | |
df["Company"] = 0 | |
df.loc[(df["SibSp"] > 0), "Company"] = 1 | |
df.loc[(df["Parch"] > 0), "Company"] = 2 | |
df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3 | |
df = df[ | |
[ | |
"PassengerId", | |
"Pclass", | |
"Sex", | |
"Age", | |
"Fare", | |
"Embarked", | |
"Company", | |
"Survived", | |
] | |
] | |
return df | |
train = encode_df(data) | |
X_all = train.drop(["Survived", "PassengerId"], axis=1) | |
y_all = train["Survived"] | |
num_test = 0.20 | |
X_train, X_test, y_train, y_test = train_test_split( | |
X_all, y_all, test_size=num_test, random_state=23 | |
) | |
clf = RandomForestClassifier() | |
clf.fit(X_train, y_train) | |
predictions = clf.predict(X_test) | |
n_estimators = 50 | |
max_depth = 4 | |
n_bits = 6 | |
n_jobs_xgb = 1 | |
n_jobs_gridsearch = -1 | |
concrete_clf = ConcreteRandomForestClassifier( | |
n_bits=n_bits, n_estimators=n_estimators, max_depth=max_depth, n_jobs=n_jobs_xgb | |
) | |
concrete_clf.fit(X_train, y_train) | |
concrete_predictions = concrete_clf.predict(X_test) | |
def predict_survival(passenger_class, is_male, age, company, fare, embark_point): | |
if passenger_class is None or embark_point is None: | |
return None | |
df = pd.DataFrame.from_dict( | |
{ | |
"Pclass": [passenger_class + 1], | |
"Sex": [0 if is_male else 1], | |
"Age": [age], | |
"Fare": [fare], | |
"Embarked": [embark_point + 1], | |
"Company": [ | |
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0) | |
] | |
} | |
) | |
df = encode_age(df) | |
df = encode_fare(df) | |
pred = clf.predict_proba(df)[0] | |
return {"Perishes": float(pred[0]), "Survives": float(pred[1])} | |
def collect_input(passenger_class, is_male, age, company, fare, embark_point): | |
if passenger_class is None or embark_point is None: | |
return None | |
input_dict = { | |
"Pclass": [passenger_class + 1], | |
"Sex": [0 if is_male else 1], | |
"Age": [age], | |
"Fare": [fare], | |
"Embarked": [embark_point + 1], | |
"Company": [ | |
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0) | |
] | |
} | |
# print(input_dict) | |
return input_dict | |
def clear_predict_survival(input_dict): | |
df = pd.DataFrame.from_dict(input_dict) | |
df = encode_age(df) | |
df = encode_fare(df) | |
pred = clf.predict_proba(df)[0] | |
return {"Perishes": float(pred[0]), "Survives": float(pred[1])} | |
def concrete_predict_survival(input_dict): | |
df = pd.DataFrame.from_dict(input_dict) | |
df = encode_age(df) | |
df = encode_fare(df) | |
pred = concrete_clf.predict_proba(df)[0] | |
return {"Perishes": float(pred[0]), "Survives": float(pred[1])} | |
# print("\nclear_test ", clear_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]})) | |
# print("encrypted_test", concrete_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]}),"\n") | |
def key_gen_fn() -> Dict: | |
""" | |
Generate keys for a given user. | |
Args: | |
Returns: | |
dict: A dictionary containing the generated keys and related information. | |
""" | |
clean_directory() | |
# Generate a random user ID | |
user_id = np.random.randint(0, 2**32) | |
print(f"Your user ID is: {user_id}....") | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") | |
client.load() | |
# Creates the private and evaluation keys on the client side | |
client.generate_private_and_evaluation_keys() | |
# Get the serialized evaluation keys | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
assert isinstance(serialized_evaluation_keys, bytes) | |
# Save the evaluation key | |
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" | |
with evaluation_key_path.open("wb") as f: | |
f.write(serialized_evaluation_keys) | |
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT] | |
return { | |
error_box2: gr.update(visible=False), | |
key_box: gr.update(visible=True, value=serialized_evaluation_keys_shorten_hex), | |
user_id_box: gr.update(visible=True, value=user_id), | |
key_len_box: gr.update( | |
visible=True, value=f"{len(serialized_evaluation_keys) / (10**6):.2f} MB" | |
), | |
} | |
def encrypt_fn(user_inputs: np.ndarray, user_id: str) -> None: | |
""" | |
""" | |
if is_none(user_id) or is_none(user_inputs): | |
print("Error in encryption step: Provide your inputs and generate the evaluation keys.") | |
return { | |
error_box3: gr.update( | |
visible=True, | |
value="⚠️ Please ensure that your inputs have been submitted and " | |
"that you have generated the evaluation key.", | |
) | |
} | |
# Retrieve the client API | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") | |
client.load() | |
user_inputs_df = pd.DataFrame.from_dict(user_inputs) | |
user_inputs_df = encode_age(user_inputs_df) | |
user_inputs_df = encode_fare(user_inputs_df) | |
print("user_inputs to be encrypted =\n", user_inputs_df) | |
print("user_inputs to be encrypted =\n", user_inputs_df.to_numpy()) | |
encrypted_quantized_user_inputs = client.quantize_encrypt_serialize(user_inputs_df.to_numpy()) | |
assert isinstance(encrypted_quantized_user_inputs, bytes) | |
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" | |
with encrypted_input_path.open("wb") as f: | |
f.write(encrypted_quantized_user_inputs) | |
encrypted_quantized_user_inputs_shorten_hex = encrypted_quantized_user_inputs.hex()[ | |
:INPUT_BROWSER_LIMIT | |
] | |
return { | |
error_box3: gr.update(visible=False), | |
input_dict_box: gr.update(visible=True, value=user_inputs), | |
enc_dict_box: gr.update(visible=True, value=encrypted_quantized_user_inputs_shorten_hex), | |
} | |
def send_input_fn(user_id: str, user_inputs: np.ndarray) -> Dict: | |
"""Send the encrypted data and the evaluation key to the server. | |
""" | |
if is_none(user_id) or is_none(user_inputs): | |
return { | |
error_box4: gr.update( | |
visible=True, | |
value="⚠️ Please check your connectivity \n" | |
"⚠️ Ensure that the inputs have been submitted and the evaluation " | |
"key has been generated before sending the data to the server.", | |
) | |
} | |
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" | |
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" | |
if not evaluation_key_path.is_file(): | |
print( | |
"Error Encountered While Sending Data to the Server: " | |
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" | |
) | |
return { | |
error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.") | |
} | |
if not encrypted_input_path.is_file(): | |
print( | |
"Error Encountered While Sending Data to the Server: The data has not been encrypted " | |
f"correctly on the client side - {encrypted_input_path.is_file()=}" | |
) | |
return { | |
error_box4: gr.update( | |
visible=True, | |
value="⚠️ Please encrypt the data with the private key first.", | |
), | |
} | |
# Define the data and files to post | |
data = { | |
"user_id": user_id, | |
"input": user_inputs, | |
} | |
files = [ | |
("files", open(encrypted_input_path, "rb")), | |
("files", open(evaluation_key_path, "rb")), | |
] | |
# Send the encrypted input and evaluation key to the server | |
url = SERVER_URL + "send_input" | |
with requests.post( | |
url=url, | |
data=data, | |
files=files, | |
) as response: | |
print(f"Sending Data: {response.ok=}") | |
return { | |
error_box4: gr.update(visible=False), | |
srv_resp_send_data_box: "Data sent", | |
} | |
def run_fhe_fn(user_id: str) -> Dict: | |
"""Send the encrypted input and the evaluation key to the server. | |
Args: | |
user_id (int): The current user's ID. | |
""" | |
if is_none(user_id): | |
return { | |
error_box5: gr.update( | |
visible=True, | |
value="⚠️ Please check your connectivity \n" | |
"⚠️ Ensure that the inputs have been submitted, the evaluation " | |
"key has been generated and the server received the data " | |
"before processing the data.", | |
), | |
fhe_execution_time_box: None, | |
} | |
data = { | |
"user_id": user_id, | |
} | |
url = SERVER_URL + "run_fhe" | |
with requests.post( | |
url=url, | |
data=data, | |
) as response: | |
if not response.ok: | |
return { | |
error_box5: gr.update( | |
visible=True, | |
value=( | |
"⚠️ An error occurred on the Server Side. " | |
"Please check connectivity and data transmission." | |
), | |
), | |
fhe_execution_time_box: gr.update(visible=False), | |
} | |
else: | |
time.sleep(10) | |
print(f"response.ok: {response.ok}, {response.json()} - Computed") | |
return { | |
error_box5: gr.update(visible=False), | |
fhe_execution_time_box: gr.update(visible=True, value=f"{response.json():.2f} seconds"), | |
} | |
def send_input_fn(user_id: str, user_inputs: np.ndarray) -> Dict: | |
"""Send the encrypted data and the evaluation key to the server. | |
""" | |
if is_none(user_id) or is_none(user_inputs): | |
return { | |
error_box4: gr.update( | |
visible=True, | |
value="⚠️ Please check your connectivity \n" | |
"⚠️ Ensure that the inputs have been submitted and the evaluation " | |
"key has been generated before sending the data to the server.", | |
) | |
} | |
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" | |
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" | |
if not evaluation_key_path.is_file(): | |
print( | |
"Error Encountered While Sending Data to the Server: " | |
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" | |
) | |
return { | |
error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.") | |
} | |
if not encrypted_input_path.is_file(): | |
print( | |
"Error Encountered While Sending Data to the Server: The data has not been encrypted " | |
f"correctly on the client side - {encrypted_input_path.is_file()=}" | |
) | |
return { | |
error_box4: gr.update( | |
visible=True, | |
value="⚠️ Please encrypt the data with the private key first.", | |
), | |
} | |
# Define the data and files to post | |
data = { | |
"user_id": user_id, | |
"input": user_inputs, | |
} | |
files = [ | |
("files", open(encrypted_input_path, "rb")), | |
("files", open(evaluation_key_path, "rb")), | |
] | |
# Send the encrypted input and evaluation key to the server | |
url = SERVER_URL + "send_input" | |
with requests.post( | |
url=url, | |
data=data, | |
files=files, | |
) as response: | |
print(f"Sending Data: {response.ok=}") | |
return { | |
error_box4: gr.update(visible=False), | |
srv_resp_send_data_box: "Data sent", | |
} | |
def get_output_fn(user_id: str, user_inputs: np.ndarray) -> Dict: | |
"""Retreive the encrypted data from the server. | |
""" | |
if is_none(user_id) or is_none(user_inputs): | |
return { | |
error_box6: gr.update( | |
visible=True, | |
value="⚠️ Please check your connectivity \n" | |
"⚠️ Ensure that the server has successfully processed and transmitted the data to the client.", | |
) | |
} | |
data = { | |
"user_id": user_id, | |
} | |
# Retrieve the encrypted output | |
url = SERVER_URL + "get_output" | |
with requests.post( | |
url=url, | |
data=data, | |
) as response: | |
if response.ok: | |
print(f"Receive Data: {response.ok=}") | |
encrypted_output = response.content | |
# Save the encrypted output to bytes in a file as it is too large to pass through | |
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877) | |
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" | |
with encrypted_output_path.open("wb") as f: | |
f.write(encrypted_output) | |
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"} | |
def decrypt_fn(user_id: str, user_inputs: np.ndarray) -> Dict: | |
"""Dencrypt the data on the `Client Side`. | |
Args: | |
user_id (str): The current user's ID | |
user_inputs (np.ndarray): The user inputs | |
Returns: | |
Decrypted output | |
""" | |
if is_none(user_id) or is_none(user_inputs): | |
return { | |
error_box7: gr.update( | |
visible=True, | |
value="⚠️ Please check your connectivity \n" | |
"⚠️ Ensure that the client has successfully received the data from the server.", | |
) | |
} | |
# Get the encrypted output path | |
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" | |
if not encrypted_output_path.is_file(): | |
print("Error in decryption step: Please run the FHE execution, first.") | |
return { | |
error_box7: gr.update( | |
visible=True, | |
value="⚠️ Please ensure that: \n" | |
"- the connectivity \n" | |
"- the inputs have been submitted \n" | |
"- the evaluation key has been generated \n" | |
"- the server processed the encrypted data \n" | |
"- the Client received the data from the Server before decrypting the prediction", | |
), | |
decrypt_box: None, | |
} | |
# Load the encrypted output as bytes | |
with encrypted_output_path.open("rb") as f: | |
encrypted_output = f.read() | |
# Retrieve the client API | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") | |
client.load() | |
# Deserialize, decrypt and post-process the encrypted output | |
output = client.deserialize_decrypt_dequantize(encrypted_output) | |
print("output =\n", output) | |
# top3_diseases = np.argsort(output.flatten())[-3:][::-1] | |
# top3_proba = output[0][top3_diseases] | |
out = {"Perishes": float(output[0][0]), "Survives": float(output[0][1])} | |
print("output =\n", out) | |
return { | |
error_box7: gr.update(visible=False), | |
decrypt_box: out, | |
label: out, | |
} | |
with gr.Blocks() as demo: | |
# Step 1.1: Provide inputs | |
gr.Markdown("### Titanic Survival Prediction with ML and Private Computation") | |
with gr.Row(): | |
inp = [ | |
gr.Dropdown(["first", "second", "third"], type="index", label="Select Passenger Class"), | |
gr.Checkbox(label="Male?"), | |
gr.Slider(0, 80, value=25, label="Age", step=1), | |
gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"), | |
gr.Number(value=20, label="Fare"), | |
gr.Radio(["Southampton", "Cherbourg", "Queenstown"], type="index", label="Embark point:"), | |
] | |
out = gr.JSON() | |
btn = gr.Button("Confirm inputs") | |
btn.click(fn=collect_input, inputs=inp, outputs=out) | |
# Step 2.1: Key generation | |
gen_key_btn = gr.Button("Generate the evaluation key") | |
error_box2 = gr.Textbox(label="Error ❌", visible=False) | |
user_id_box = gr.Textbox(label="User ID:", visible=True) | |
key_len_box = gr.Textbox(label="Evaluation Key Size:", visible=False) | |
key_box = gr.Textbox(label="Evaluation key (truncated):", max_lines=3, visible=False) | |
gen_key_btn.click( | |
key_gen_fn, | |
inputs=None, | |
outputs=[ | |
key_box, | |
user_id_box, | |
key_len_box, | |
error_box2, | |
], | |
) | |
# # Step 2.2: Encrypt data locally | |
gr.Markdown("### Encrypt the data") | |
encrypt_btn = gr.Button("Encrypt the data using the private secret key") | |
error_box3 = gr.Textbox(label="Error ❌", visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
input_dict_box = gr.Textbox(label="input_dict_box:", max_lines=10) | |
with gr.Column(): | |
enc_dict_box = gr.Textbox(label="encrypted input_dict_box:", max_lines=10) | |
encrypt_btn.click( | |
encrypt_fn, | |
inputs=[out, user_id_box], | |
outputs=[ | |
input_dict_box, | |
enc_dict_box, | |
error_box3, | |
], | |
) | |
# # Step 2.3: Send encrypted data to the server | |
gr.Markdown( | |
"### Send the encrypted data to the Server Side" | |
) | |
error_box4 = gr.Textbox(label="Error ❌", visible=False) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
send_input_btn = gr.Button("Send data") | |
with gr.Column(scale=1): | |
srv_resp_send_data_box = gr.Checkbox(label="Data Sent", show_label=False) | |
send_input_btn.click( | |
send_input_fn, | |
inputs=[user_id_box, out], | |
outputs=[error_box4, srv_resp_send_data_box], | |
) | |
# ------------------------- Step 3 ------------------------- | |
gr.Markdown("\n") | |
gr.Markdown("## Step 3: Run the FHE evaluation") | |
gr.Markdown("<hr />") | |
gr.Markdown("<span style='color:grey'>Server Side</span>") | |
gr.Markdown( | |
"Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n" | |
) | |
run_fhe_btn = gr.Button("Run the FHE evaluation") | |
error_box5 = gr.Textbox(label="Error ❌", visible=False) | |
fhe_execution_time_box = gr.Textbox(label="Total FHE Execution Time:", visible=True) | |
run_fhe_btn.click( | |
run_fhe_fn, | |
inputs=[user_id_box], | |
outputs=[fhe_execution_time_box, error_box5], | |
) | |
# ------------------------- Step 4 ------------------------- | |
gr.Markdown("\n") | |
gr.Markdown("## Step 4: Decrypt the data") | |
gr.Markdown("<hr />") | |
gr.Markdown("<span style='color:grey'>Client Side</span>") | |
gr.Markdown( | |
"### Get the encrypted data from the Server Side" | |
) | |
error_box6 = gr.Textbox(label="Error ❌", visible=False) | |
# Step 4.1: Data transmission | |
with gr.Row(): | |
with gr.Column(scale=4): | |
get_output_btn = gr.Button("Get data") | |
with gr.Column(scale=1): | |
srv_resp_retrieve_data_box = gr.Checkbox(label="Data Received", show_label=False) | |
get_output_btn.click( | |
get_output_fn, | |
inputs=[user_id_box, out], | |
outputs=[srv_resp_retrieve_data_box, error_box6], | |
) | |
# Step 4.1: Data transmission | |
gr.Markdown("### Decrypt the output") | |
decrypt_btn = gr.Button("Decrypt the output using the private secret key") | |
error_box7 = gr.Textbox(label="Error ❌", visible=False) | |
decrypt_box = gr.Textbox(label="Decrypted Output:") | |
label = gr.Label() | |
decrypt_btn.click( | |
decrypt_fn, | |
inputs=[user_id_box, out], | |
outputs=[decrypt_box, error_box7, label], | |
) | |
# ------------------------- End ------------------------- | |
demo.launch() |