Spaces:
Sleeping
Sleeping
Upload 18 files
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- README.md +2 -8
- app.py +4 -4
- deployment_logit/client.zip +2 -2
- deployment_logit/client_dir/3427324229_encrypted_output +3 -0
- deployment_logit/client_dir/447559753_encrypted_output +0 -0
- deployment_logit/server.zip +2 -2
- deployment_logit/server_dir/3427324229_encrypted_input +0 -0
- deployment_logit/server_dir/3427324229_encrypted_output +3 -0
- deployment_logit/server_dir/447559753_encrypted_input +0 -0
- deployment_logit/server_dir/447559753_encrypted_output +0 -0
- deployment_logit/versions.json +1 -1
- requirements.txt +4 -4
- server.py +1 -1
- train.py +120 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
deployment_logit/client_dir/3427324229_encrypted_output filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
deployment_logit/client_dir/3427324229_encrypted_output filter=lfs diff=lfs merge=lfs -text
|
33 |
+
deployment_logit/server_dir/3427324229_encrypted_output filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
.fhe_keys/
|
2 |
client_dir/
|
3 |
server_dir/
|
|
|
1 |
+
.fhe/
|
2 |
.fhe_keys/
|
3 |
client_dir/
|
4 |
server_dir/
|
README.md
CHANGED
@@ -1,13 +1,7 @@
|
|
1 |
-
|
2 |
-
title: Titanic Survival Prediction using Fully Homomorphic Encryption (FHE)
|
3 |
-
sdk: gradio
|
4 |
-
colorFrom: blue
|
5 |
-
---
|
6 |
-
|
7 |
-
Titanic Survival Prediction using Fully Homomorphic Encryption (FHE)
|
8 |
|
9 |
Titanic survival code adapted from:
|
10 |
https://huggingface.co/spaces/gradio/titanic_survival_main
|
11 |
|
12 |
FHE Cloud Deployment code adapted from:
|
13 |
-
https://github.com/zama-ai/concrete-ml/blob/release/1.1.x/use_case_examples/deployment/README.md
|
|
|
1 |
+
Titanic Survival Prediction using Fully Homomorphic Encryption (FHE) and Cloud Deployment of Encrypted ML
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
Titanic survival code adapted from:
|
4 |
https://huggingface.co/spaces/gradio/titanic_survival_main
|
5 |
|
6 |
FHE Cloud Deployment code adapted from:
|
7 |
+
https://github.com/zama-ai/concrete-ml/blob/release/1.1.x/use_case_examples/deployment/README.md
|
app.py
CHANGED
@@ -166,9 +166,9 @@ def concrete_predict_survival(input_dict):
|
|
166 |
pred = concrete_clf.predict_proba(df)[0]
|
167 |
return {"Perishes": float(pred[0]), "Survives": float(pred[1])}
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
|
174 |
def key_gen_fn() -> Dict:
|
@@ -362,7 +362,7 @@ def run_fhe_fn(user_id: str) -> Dict:
|
|
362 |
fhe_execution_time_box: gr.update(visible=False),
|
363 |
}
|
364 |
else:
|
365 |
-
time.sleep(
|
366 |
print(f"response.ok: {response.ok}, {response.json()} - Computed")
|
367 |
|
368 |
return {
|
@@ -661,4 +661,4 @@ with gr.Blocks() as demo:
|
|
661 |
|
662 |
# ------------------------- End -------------------------
|
663 |
|
664 |
-
demo.launch(
|
|
|
166 |
pred = concrete_clf.predict_proba(df)[0]
|
167 |
return {"Perishes": float(pred[0]), "Survives": float(pred[1])}
|
168 |
|
169 |
+
print("\nclear_test ", clear_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]}))
|
170 |
|
171 |
+
print("encrypted_test", concrete_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]}),"\n")
|
172 |
|
173 |
|
174 |
def key_gen_fn() -> Dict:
|
|
|
362 |
fhe_execution_time_box: gr.update(visible=False),
|
363 |
}
|
364 |
else:
|
365 |
+
time.sleep(10)
|
366 |
print(f"response.ok: {response.ok}, {response.json()} - Computed")
|
367 |
|
368 |
return {
|
|
|
661 |
|
662 |
# ------------------------- End -------------------------
|
663 |
|
664 |
+
demo.launch()
|
deployment_logit/client.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:058a33d9d78957b853112809fc202cd1ee546c9beca2550ed95f140569833657
|
3 |
+
size 6437
|
deployment_logit/client_dir/3427324229_encrypted_output
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7daf64ac339601799c4db40703bd2c1b9d699288f06814ddb3a2f391eb20d934
|
3 |
+
size 3932690
|
deployment_logit/client_dir/447559753_encrypted_output
ADDED
Binary file (984 kB). View file
|
|
deployment_logit/server.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54c45f9b27bd5493a2e58e3ad9fa8365490bd65abefbe0befb24b1f1a20c433c
|
3 |
+
size 14985
|
deployment_logit/server_dir/3427324229_encrypted_input
ADDED
Binary file (393 kB). View file
|
|
deployment_logit/server_dir/3427324229_encrypted_output
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7daf64ac339601799c4db40703bd2c1b9d699288f06814ddb3a2f391eb20d934
|
3 |
+
size 3932690
|
deployment_logit/server_dir/447559753_encrypted_input
ADDED
Binary file (61.8 kB). View file
|
|
deployment_logit/server_dir/447559753_encrypted_output
ADDED
Binary file (984 kB). View file
|
|
deployment_logit/versions.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"concrete-
|
|
|
1 |
+
{"concrete-python": "2.5.1", "concrete-ml": "1.4.1", "python": "3.10.12"}
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
scikit-learn
|
2 |
numpy
|
3 |
pandas
|
4 |
-
concrete-ml
|
5 |
-
gradio
|
6 |
-
uvicorn
|
7 |
-
fastapi
|
|
|
1 |
scikit-learn
|
2 |
numpy
|
3 |
pandas
|
4 |
+
concrete-ml
|
5 |
+
gradio
|
6 |
+
uvicorn
|
7 |
+
fastapi
|
server.py
CHANGED
@@ -94,7 +94,7 @@ def get_output(user_id: str = Form()):
|
|
94 |
with encrypted_output_path.open("rb") as f:
|
95 |
encrypted_output = f.read()
|
96 |
|
97 |
-
time.sleep(
|
98 |
|
99 |
# Send the encrypted output
|
100 |
return Response(encrypted_output)
|
|
|
94 |
with encrypted_output_path.open("rb") as f:
|
95 |
encrypted_output = f.read()
|
96 |
|
97 |
+
time.sleep(10)
|
98 |
|
99 |
# Send the encrypted output
|
100 |
return Response(encrypted_output)
|
train.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import numpy
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from sklearn.ensemble import RandomForestClassifier
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
|
10 |
+
from sklearn.metrics import average_precision_score
|
11 |
+
from sklearn.model_selection import GridSearchCV, train_test_split
|
12 |
+
|
13 |
+
from concrete.ml.sklearn import RandomForestClassifier as ConcreteRandomForestClassifier
|
14 |
+
|
15 |
+
def train(dev_folder="./dev"):
|
16 |
+
# Download the data-sets
|
17 |
+
if not os.path.isfile("./files/titanic.csv"):
|
18 |
+
raise ValueError(
|
19 |
+
"no dataset"
|
20 |
+
)
|
21 |
+
|
22 |
+
current_dir = os.path.dirname(os.path.realpath(__file__))
|
23 |
+
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv"))
|
24 |
+
|
25 |
+
def encode_age(df):
|
26 |
+
df.Age = df.Age.fillna(-0.5)
|
27 |
+
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
28 |
+
categories = pd.cut(df.Age, bins, labels=False)
|
29 |
+
df.Age = categories
|
30 |
+
return df
|
31 |
+
|
32 |
+
|
33 |
+
def encode_fare(df):
|
34 |
+
df.Fare = df.Fare.fillna(-0.5)
|
35 |
+
bins = (-1, 0, 8, 15, 31, 1000)
|
36 |
+
categories = pd.cut(df.Fare, bins, labels=False)
|
37 |
+
df.Fare = categories
|
38 |
+
return df
|
39 |
+
|
40 |
+
|
41 |
+
def encode_df(df):
|
42 |
+
df = encode_age(df)
|
43 |
+
df = encode_fare(df)
|
44 |
+
sex_mapping = {"male": 0, "female": 1}
|
45 |
+
df = df.replace({"Sex": sex_mapping})
|
46 |
+
embark_mapping = {"S": 1, "C": 2, "Q": 3}
|
47 |
+
df = df.replace({"Embarked": embark_mapping})
|
48 |
+
df.Embarked = df.Embarked.fillna(0)
|
49 |
+
df["Company"] = 0
|
50 |
+
df.loc[(df["SibSp"] > 0), "Company"] = 1
|
51 |
+
df.loc[(df["Parch"] > 0), "Company"] = 2
|
52 |
+
df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3
|
53 |
+
df = df[
|
54 |
+
[
|
55 |
+
"PassengerId",
|
56 |
+
"Pclass",
|
57 |
+
"Sex",
|
58 |
+
"Age",
|
59 |
+
"Fare",
|
60 |
+
"Embarked",
|
61 |
+
"Company",
|
62 |
+
"Survived",
|
63 |
+
]
|
64 |
+
]
|
65 |
+
return df
|
66 |
+
|
67 |
+
train = encode_df(data)
|
68 |
+
|
69 |
+
X_all = train.drop(["Survived", "PassengerId"], axis=1)
|
70 |
+
y_all = train["Survived"]
|
71 |
+
|
72 |
+
num_test = 0.20
|
73 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
74 |
+
X_all, y_all, test_size=num_test, random_state=23
|
75 |
+
)
|
76 |
+
|
77 |
+
# n_estimators = 50
|
78 |
+
# max_depth = 4
|
79 |
+
# n_bits = 6
|
80 |
+
# n_jobs_xgb = 1
|
81 |
+
# n_jobs_gridsearch = -1
|
82 |
+
|
83 |
+
# A gridsearch to find the best parameters
|
84 |
+
parameters = {
|
85 |
+
"n_bits": [6],
|
86 |
+
"max_depth": [4, 8],
|
87 |
+
"n_estimators": [30, 50],
|
88 |
+
"n_jobs": [-1],
|
89 |
+
}
|
90 |
+
|
91 |
+
concrete_clf = ConcreteRandomForestClassifier()
|
92 |
+
# concrete_clf.fit(X_train, y_train)
|
93 |
+
# concrete_predictions = concrete_clf.predict(X_test)
|
94 |
+
|
95 |
+
grid_search = GridSearchCV(concrete_clf, parameters, cv=3, n_jobs=-1, scoring="accuracy")
|
96 |
+
grid_search.fit(X_train, y_train)
|
97 |
+
|
98 |
+
# Check the accuracy of the best model
|
99 |
+
print(f"Best score: {grid_search.best_score_}")
|
100 |
+
|
101 |
+
# Check best hyper-parameters
|
102 |
+
print(f"Best parameters: {grid_search.best_params_}")
|
103 |
+
|
104 |
+
# Extract best model
|
105 |
+
best_model = grid_search.best_estimator_
|
106 |
+
assert isinstance(best_model, ConcreteRandomForestClassifier)
|
107 |
+
|
108 |
+
best_model.compile(X_train)
|
109 |
+
|
110 |
+
# Export the final model such that we can reuse it in a client/server environment
|
111 |
+
|
112 |
+
# Save the model to be pushed to a server later
|
113 |
+
from concrete.ml.deployment import FHEModelDev
|
114 |
+
|
115 |
+
fhe_api = FHEModelDev(dev_folder, best_model)
|
116 |
+
fhe_api.save()
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
train()
|