Alshargi commited on
Commit
27b7dcb
·
verified ·
1 Parent(s): ba0be6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -1,13 +1,8 @@
1
  import streamlit as st
2
- import joblib
 
3
  import re
4
- from transformers import pipeline
5
-
6
- # Load the scikit-learn model
7
- sklearn_model = joblib.load("arabic-msa-dialects-segmentation-v1.pkl")
8
-
9
- # Wrap the scikit-learn model inside a Hugging Face pipeline
10
- pipeline_model = pipeline(task="feature-extraction", model=sklearn_model)
11
 
12
  # Define feature functions
13
  def features(sentence, index):
@@ -58,10 +53,14 @@ if text_input:
58
  # Extract features
59
  features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))]
60
 
61
- # Use the Hugging Face pipeline to make predictions
62
- prediction = pipeline_model(features_list)
 
 
 
 
63
 
64
- # Display the prediction
65
- st.write("Prediction:", prediction)
66
  else:
67
  st.write("Please enter some text.")
 
1
  import streamlit as st
2
+ import skops.hub_utils as hub_utils
3
+ import pandas as pd
4
  import re
5
+ from nltk.tokenize import word_tokenize
 
 
 
 
 
 
6
 
7
  # Define feature functions
8
  def features(sentence, index):
 
53
  # Extract features
54
  features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))]
55
 
56
+ # Create a DataFrame with the features
57
+ data = pd.DataFrame(features_list)
58
+
59
+ # Load the model from the Hub
60
+ model_id = "Alshargi/arabic-msa-dialects-segmentation"
61
+ res = hub_utils.get_model_output(model_id, data)
62
 
63
+ # Display the model output
64
+ st.write("Model Output:", res)
65
  else:
66
  st.write("Please enter some text.")