Alshargi commited on
Commit
360d3d5
·
verified ·
1 Parent(s): 74ecb74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -7
app.py CHANGED
@@ -1,11 +1,20 @@
1
- import streamlit as st
2
- import skops.hub_utils as hub_utils
3
- import pandas as pd
4
  import re
5
  from nltk.tokenize import word_tokenize
6
  import nltk
7
 
8
 
 
 
 
 
 
 
 
 
 
9
  nltk.download('punkt')
10
 
11
 
@@ -114,18 +123,17 @@ def features(sentence, index):
114
  }
115
 
116
 
117
- import gradio as gr
118
 
119
  # Define the function for processing user input
120
  def process_text(text_input):
121
  if text_input:
122
- # Prepare text
123
  prepared_text = prepare_text(text_input)
124
 
125
  # Tokenize text
126
  tokenized_text = word_tokenize(prepared_text)
127
 
128
- # Extract features
129
  features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))]
130
 
131
  # Create a DataFrame with the features
@@ -133,7 +141,10 @@ def process_text(text_input):
133
 
134
  # Load the model from the Hub
135
  model_id = "Alshargi/arabic-msa-dialects-segmentation"
136
- res = hub_utils.get_model_output(model_id, data)
 
 
 
137
 
138
  # Return the model output
139
  return res
@@ -145,3 +156,4 @@ iface = gr.Interface(fn=process_text, inputs="text", outputs="text", title="Arab
145
 
146
  # Launch the Gradio interface
147
  iface.launch(share=True)
 
 
1
+ #import streamlit as st
2
+ #import skops.hub_utils as hub_utils
3
+ #import pandas as pd
4
  import re
5
  from nltk.tokenize import word_tokenize
6
  import nltk
7
 
8
 
9
+
10
+
11
+ import gradio as gr
12
+ import pandas as pd
13
+ from nltk.tokenize import word_tokenize
14
+ from transformers import AutoModelForSequenceClassification
15
+ import hub_utils # Assuming you have a custom module for interacting with the Hugging Face model hub
16
+
17
+
18
  nltk.download('punkt')
19
 
20
 
 
123
  }
124
 
125
 
 
126
 
127
  # Define the function for processing user input
128
  def process_text(text_input):
129
  if text_input:
130
+ # Prepare text (define this function)
131
  prepared_text = prepare_text(text_input)
132
 
133
  # Tokenize text
134
  tokenized_text = word_tokenize(prepared_text)
135
 
136
+ # Extract features (define this function)
137
  features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))]
138
 
139
  # Create a DataFrame with the features
 
141
 
142
  # Load the model from the Hub
143
  model_id = "Alshargi/arabic-msa-dialects-segmentation"
144
+ model = AutoModelForSequenceClassification.from_pretrained(model_id)
145
+
146
+ # Get model output (define or import the get_model_output function)
147
+ res = hub_utils.get_model_output(model, data)
148
 
149
  # Return the model output
150
  return res
 
156
 
157
  # Launch the Gradio interface
158
  iface.launch(share=True)
159
+