Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,111 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoConfig
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Load the model using the configuration
|
8 |
-
model = pipeline("text-classification", model="Alshargi/arabic-msa-dialects-segmentation", config=config)
|
9 |
|
10 |
# Slider to select a value
|
11 |
x = st.slider('Select a value')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Display the squared value
|
14 |
-
st.write(x, 'squared is', x * x)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
# Display the prediction
|
20 |
-
st.write("Prediction:",
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
+
import joblib
|
4 |
+
from nltk import word_tokenize
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
#import string, re
|
10 |
+
def features(sentence, index):
|
11 |
+
return {
|
12 |
+
'word': sentence[index],
|
13 |
+
'is_first': index == 0,
|
14 |
+
'is_last': index == len(sentence) - 1,
|
15 |
+
'lword': len(sentence[index]),
|
16 |
+
|
17 |
+
'prefix-1': sentence[index][:1],
|
18 |
+
'prefix-2': sentence[index][:2],
|
19 |
+
'prefix-3': sentence[index][:3],
|
20 |
+
'prefix-4': sentence[index][:4],
|
21 |
+
'prefix-5': sentence[index][:5],
|
22 |
+
|
23 |
+
'suffix-1': sentence[index][-1],
|
24 |
+
'suffix-2': sentence[index][-2:],
|
25 |
+
'suffix-3': sentence[index][-3:],
|
26 |
+
'suffix-4': sentence[index][-4:],
|
27 |
+
'suffix-5': sentence[index][-5:],
|
28 |
+
|
29 |
+
'prev_word_4': prvwords_4(sentence, index),
|
30 |
+
'prev_word_3': prvwords_3(sentence, index),
|
31 |
+
'prev_word_2': prvwords_2(sentence, index),
|
32 |
+
'prev_word_1': prvwords_1(sentence, index),
|
33 |
+
|
34 |
+
|
35 |
+
'next_word_1': nextwords_1(sentence, index),
|
36 |
+
'next_word_2': nextwords_2(sentence, index),
|
37 |
+
'next_word_3': nextwords_3(sentence, index),
|
38 |
+
'next_word_4': nextwords_4(sentence, index),
|
39 |
+
|
40 |
+
'is_numeric': sentence[index].isdigit(),
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def rebuildxx(ww, xres):
|
47 |
+
numprfx = xres.count('p')
|
48 |
+
numsufx = xres.count('f')
|
49 |
+
resfinal = ''
|
50 |
+
if numprfx != 0 and numsufx != 0 :
|
51 |
+
resfinal = "{}+{}+{}".format(ww[:numprfx] , ww[numprfx:-numsufx] , ww[-numsufx:] )
|
52 |
+
if numprfx == 0 and numsufx == 0 :
|
53 |
+
#resfinal = "{}+{}+{}".format("", ww , "" )
|
54 |
+
resfinal = "{}".format(ww )
|
55 |
+
|
56 |
+
if numprfx == 0 and numsufx != 0 :
|
57 |
+
#resfinal = "{}+{}+{}".format("" , ww[:-numsufx], ww[-numsufx:] )
|
58 |
+
resfinal = "{}+{}".format(ww[:-numsufx], ww[-numsufx:] )
|
59 |
+
|
60 |
+
if numprfx != 0 and numsufx == 0 :
|
61 |
+
#resfinal = "{}+{}+{}".format(ww[:numprfx] , ww[numprfx:], "")
|
62 |
+
resfinal = "{}+{}".format(ww[:numprfx] , ww[numprfx:])
|
63 |
+
|
64 |
+
return resfinal
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
import re
|
69 |
+
|
70 |
+
def prepare_text(text):
|
71 |
+
# Define regular expression pattern to match symbols and punctuation from any language
|
72 |
+
symbol_pattern = r'([^\w\s\d])' # Capture non-word, non-space, non-digit characters
|
73 |
+
prepared_text = re.sub(symbol_pattern, r' \1 ', text)
|
74 |
+
prepared_text = re.sub(r'\s+', ' ', prepared_text)
|
75 |
+
|
76 |
+
return prepared_text.strip() # Remove leading and trailing spaces
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# load model
|
82 |
+
clf = joblib.load('arabic-msa-dialects-segmentation-v1.pkl')
|
83 |
+
print("loaded")
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
keepall = []
|
90 |
|
|
|
|
|
91 |
|
92 |
# Slider to select a value
|
93 |
x = st.slider('Select a value')
|
94 |
+
themaxres = x
|
95 |
+
dd = x.replace("،", "")
|
96 |
+
dd = dd.replace("؟", "")
|
97 |
+
keepall = []
|
98 |
+
|
99 |
+
gg = word_tokenize(dd)
|
100 |
+
result = clf.predict([features(gg, index) for index in range(len(gg))])
|
101 |
|
|
|
|
|
102 |
|
103 |
+
cc = ""
|
104 |
+
for x, y in zip(gg, result):
|
105 |
+
cc += rebuildxx(x, y) + " "
|
106 |
+
|
107 |
|
108 |
# Display the prediction
|
109 |
+
st.write("Prediction:", cc)
|
110 |
+
|
111 |
+
|