Update app.py
Browse files
app.py
CHANGED
@@ -1,195 +1,145 @@
|
|
1 |
|
2 |
import streamlit as st
|
3 |
-
import
|
4 |
import pandas as pd
|
|
|
5 |
from transformers import AutoModelForSequenceClassification
|
6 |
-
import
|
7 |
-
from nltk.tokenize import word_tokenize
|
8 |
import nltk
|
|
|
|
|
9 |
|
10 |
-
|
|
|
11 |
nltk.download('punkt')
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
return ''
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
'prev_word_4': prvwords_4(sentence, index),
|
105 |
-
'prev_word_3': prvwords_3(sentence, index),
|
106 |
-
'prev_word_2': prvwords_2(sentence, index),
|
107 |
-
'prev_word_1': prvwords_1(sentence, index),
|
108 |
-
'next_word_1': nextwords_1(sentence, index),
|
109 |
-
'next_word_2': nextwords_2(sentence, index),
|
110 |
-
'next_word_3': nextwords_3(sentence, index),
|
111 |
-
'next_word_4': nextwords_4(sentence, index),
|
112 |
-
'is_numeric': sentence[index].isdigit(),
|
113 |
-
}
|
114 |
-
|
115 |
-
|
116 |
-
def prepare_text(text):
|
117 |
-
# Define regular expression pattern to match symbols and punctuation from any language
|
118 |
-
symbol_pattern = r'([^\w\s\d])' # Capture non-word, non-space, non-digit characters
|
119 |
-
prepared_text = re.sub(symbol_pattern, r' \1 ', text)
|
120 |
-
prepared_text = re.sub(r'\s+', ' ', prepared_text)
|
121 |
-
|
122 |
-
return prepared_text.strip() # Remove leading and trailing spaces
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
def rebuildxx(ww, xres):
|
127 |
-
numprfx = xres.count('p')
|
128 |
-
numsufx = xres.count('f')
|
129 |
-
resfinal = ''
|
130 |
-
if numprfx != 0 and numsufx != 0 :
|
131 |
-
resfinal = "{}+{}+{}".format(ww[:numprfx] , ww[numprfx:-numsufx] , ww[-numsufx:] )
|
132 |
-
if numprfx == 0 and numsufx == 0 :
|
133 |
-
#resfinal = "{}+{}+{}".format("", ww , "" )
|
134 |
-
resfinal = "{}".format(ww )
|
135 |
-
|
136 |
-
if numprfx == 0 and numsufx != 0 :
|
137 |
-
#resfinal = "{}+{}+{}".format("" , ww[:-numsufx], ww[-numsufx:] )
|
138 |
-
resfinal = "{}+{}".format(ww[:-numsufx], ww[-numsufx:] )
|
139 |
-
|
140 |
-
if numprfx != 0 and numsufx == 0 :
|
141 |
-
#resfinal = "{}+{}+{}".format(ww[:numprfx] , ww[numprfx:], "")
|
142 |
-
resfinal = "{}+{}".format(ww[:numprfx] , ww[numprfx:])
|
143 |
-
|
144 |
-
return resfinal
|
145 |
|
146 |
|
147 |
|
148 |
|
149 |
-
# Define the function for processing user input
|
150 |
def process_text(text_input):
|
151 |
if text_input:
|
152 |
-
#
|
153 |
-
|
154 |
-
|
155 |
-
# Tokenize text
|
156 |
-
tokenized_text = word_tokenize(prepared_text) # Assuming word_tokenize function is imported
|
157 |
-
|
158 |
-
# Extract features (define this function)
|
159 |
-
features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))] # Assuming features function is defined elsewhere
|
160 |
-
|
161 |
-
# Create a DataFrame with the features
|
162 |
data = pd.DataFrame(features_list)
|
163 |
-
|
164 |
# Load the model from the Hub
|
165 |
model_id = "Alshargi/arabic-msa-dialects-segmentation"
|
166 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
167 |
-
|
168 |
# Get model output using hub_utils
|
169 |
res = hub_utils.get_model_output(model, data)
|
170 |
-
|
171 |
# Return the model output
|
172 |
return res
|
173 |
else:
|
174 |
return "Please enter some text."
|
175 |
|
|
|
176 |
def main():
|
177 |
-
st.title("Arabic
|
178 |
-
|
179 |
# Text input
|
180 |
input_text = st.text_input("Enter your text:")
|
181 |
-
|
182 |
# Process the text when a button is clicked
|
183 |
if st.button("Process"):
|
184 |
output = process_text(input_text)
|
185 |
-
|
186 |
-
cc = ""
|
187 |
-
for x, y in zip(gg, output):
|
188 |
-
cc += rebuildxx(x, y) + " "
|
189 |
-
|
190 |
-
#print(cc)
|
191 |
st.write("Model Output:")
|
192 |
-
st.write(
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
main()
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
+
import joblib
|
4 |
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
from transformers import AutoModelForSequenceClassification
|
7 |
+
import skops.hub_utils as hub_utils
|
|
|
8 |
import nltk
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from nltk.tokenize import word_tokenize
|
11 |
|
12 |
+
# Download NLTK resources including the Arabic stopwords
|
13 |
+
nltk.download('stopwords')
|
14 |
nltk.download('punkt')
|
15 |
+
arabic_stopwords = set(stopwords.words('arabic'))
|
16 |
+
|
17 |
+
TOP_labels = {
|
18 |
+
0: 'A GENERAL WORKS',
|
19 |
+
1: 'B PHILOSOPHY. PSYCHOLOGY. RELIGION',
|
20 |
+
2: 'C AUXILIARY SCIENCES OF HISTORY',
|
21 |
+
3: 'D WORLD HISTORY AND HISTORY OF EUROPE, ASIA, AFRICA, AUSTRALIA, NEW ZEALAND, ETC.',
|
22 |
+
4: 'E HISTORY OF THE AMERICAS CONTENANT',
|
23 |
+
5: 'F HISTORY OF THE AMERICAS LOCAL',
|
24 |
+
6: 'G GEOGRAPHY. ANTHROPOLOGY. RECREATION',
|
25 |
+
7: 'H SOCIAL SCIENCES',
|
26 |
+
8: 'J POLITICAL SCIENCE',
|
27 |
+
9: 'K LAW',
|
28 |
+
10: 'L EDUCATION',
|
29 |
+
11: 'M MUSIC',
|
30 |
+
12: 'N FINE ARTS',
|
31 |
+
13: 'P LANGUAGE AND LITERATURE',
|
32 |
+
14: 'Q SCIENCE',
|
33 |
+
15: 'R MEDICINE',
|
34 |
+
16: 'S AGRICULTURE',
|
35 |
+
17: 'T TECHNOLOGY',
|
36 |
+
18: 'U MILITARY SCIENCE',
|
37 |
+
19: 'V NAVAL SCIENCE',
|
38 |
+
20: 'W MEDICINE AND RELATED SUBJECTS',
|
39 |
+
21: 'Z BIBLIOGRAPHY. LIBRARY SCIENCE. INFORMATION RESOURCES'
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
# Load models
|
44 |
+
# Load CountVectorizer
|
45 |
+
loaded_count_vect_top = joblib.load('models/top_count_vectorizer_apr17.pkl')
|
46 |
+
print("_top count_vectorizer model loaded")
|
47 |
+
|
48 |
+
# Load TfidfTransformer
|
49 |
+
loaded_tf_transformer_top = joblib.load('models/top_tfidf_transformer_apr17.pkl')
|
50 |
+
print("_top tfidf_transformer model loaded")
|
51 |
+
|
52 |
+
# Load the saved model
|
53 |
+
loaded_model_top = joblib.load('models/top_trained_model_apr17.pkl')
|
54 |
+
print("_top trained_model model loaded")
|
55 |
+
|
56 |
+
|
57 |
+
def remove_tashkeel(text):
|
58 |
+
tashkeel = "ูููููููู"
|
59 |
+
for char in tashkeel:
|
60 |
+
text = text.replace(char, '')
|
61 |
+
return text
|
62 |
+
|
63 |
+
|
64 |
+
def remove_arabic_stopwords(text):
|
65 |
+
arabic_stopwords = set(stopwords.words('arabic'))
|
66 |
+
words = text.split()
|
67 |
+
filtered_words = [word for word in words if word not in arabic_stopwords]
|
68 |
+
return ' '.join(filtered_words)
|
69 |
+
|
70 |
+
|
71 |
+
def check_TOP(to_predict):
|
72 |
+
p_count = loaded_count_vect_top.transform([remove_tashkeel(to_predict)])
|
73 |
+
p_tfidf = loaded_tf_transformer_top.transform(p_count)
|
74 |
+
|
75 |
+
# Predict the subcategory
|
76 |
+
top_number = loaded_model_top.predict(p_tfidf)[0]
|
77 |
+
|
78 |
+
# Get subcategory details
|
79 |
+
top_name = TOP_labels[top_number]
|
80 |
+
themaxresX = f"{top_name} N#: {top_number}"
|
81 |
+
|
82 |
+
# Get predicted probabilities for each subcategory
|
83 |
+
probabilities = loaded_model_top.predict_proba(p_tfidf)[0] * 100
|
84 |
+
|
85 |
+
# Sort the probabilities and get top predictions
|
86 |
+
sorted_indices = np.argsort(probabilities)[::-1] # Sort in descending order
|
87 |
+
top_predictions = ['% {} {}'.format(round(probabilities[i], 4), TOP_labels[i]) for i in sorted_indices[:4]]
|
88 |
+
|
89 |
+
return themaxresX, top_predictions
|
90 |
+
|
91 |
+
|
92 |
+
def get_final_result(text):
|
93 |
+
top_result, top_predictions = check_TOP(remove_arabic_stopwords(text))
|
94 |
+
print("Text: ", text)
|
95 |
+
print("Top:", top_result)
|
96 |
+
|
97 |
+
if top_result.split(" ")[0] == "A":
|
98 |
+
sub_result, sub_top_predictions = check_subCategory_A(remove_arabic_stopwords(text))
|
99 |
+
print("Sub:", sub_result)
|
100 |
+
|
101 |
+
print()
|
102 |
+
print("------------")
|
103 |
+
print("Top Predictions:")
|
104 |
+
for prediction in top_predictions:
|
105 |
+
print(prediction)
|
106 |
+
print()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
110 |
|
|
|
111 |
def process_text(text_input):
|
112 |
if text_input:
|
113 |
+
# Extract features
|
114 |
+
features_list = [] # Assuming features function is defined elsewhere
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
data = pd.DataFrame(features_list)
|
116 |
+
|
117 |
# Load the model from the Hub
|
118 |
model_id = "Alshargi/arabic-msa-dialects-segmentation"
|
119 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
120 |
+
|
121 |
# Get model output using hub_utils
|
122 |
res = hub_utils.get_model_output(model, data)
|
123 |
+
|
124 |
# Return the model output
|
125 |
return res
|
126 |
else:
|
127 |
return "Please enter some text."
|
128 |
|
129 |
+
|
130 |
def main():
|
131 |
+
st.title("Arabic Segmentation Model Output with Streamlit")
|
132 |
+
|
133 |
# Text input
|
134 |
input_text = st.text_input("Enter your text:")
|
135 |
+
|
136 |
# Process the text when a button is clicked
|
137 |
if st.button("Process"):
|
138 |
output = process_text(input_text)
|
139 |
+
result = prepare_text(input_text)
|
|
|
|
|
|
|
|
|
|
|
140 |
st.write("Model Output:")
|
141 |
+
st.write(result)
|
142 |
+
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
main()
|