Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import supervision as sv
|
6 |
+
from pathlib import Path
|
7 |
+
from dds_cloudapi_sdk import Config, Client, TextPrompt
|
8 |
+
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
|
9 |
+
from dds_cloudapi_sdk.tasks.detection import DetectionTask
|
10 |
+
from dds_cloudapi_sdk.tasks.types import DetectionTarget
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
API_TOKEN = "361d32fa5ce22649133660c65cfcaf22"
|
14 |
+
TEXT_PROMPT = "wheel . eye . helmet . mouse . mouth . vehicle . steering wheel . ear . nose"
|
15 |
+
TEMP_DIR = "./temp"
|
16 |
+
OUTPUT_DIR = "./outputs"
|
17 |
+
|
18 |
+
# Ensure directories exist
|
19 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
20 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
21 |
+
|
22 |
+
def initialize_dino_client():
|
23 |
+
"""Initialize the DINO-X client"""
|
24 |
+
config = Config(API_TOKEN)
|
25 |
+
return Client(config)
|
26 |
+
|
27 |
+
def get_class_mappings(text_prompt):
|
28 |
+
"""Create class name to ID mappings"""
|
29 |
+
classes = [x.strip().lower() for x in text_prompt.split('.') if x]
|
30 |
+
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
31 |
+
return classes, class_name_to_id
|
32 |
+
|
33 |
+
def process_predictions(predictions, class_name_to_id):
|
34 |
+
"""Process DINO-X predictions into detection format"""
|
35 |
+
boxes = []
|
36 |
+
masks = []
|
37 |
+
confidences = []
|
38 |
+
class_names = []
|
39 |
+
class_ids = []
|
40 |
+
|
41 |
+
for obj in predictions:
|
42 |
+
boxes.append(obj.bbox)
|
43 |
+
if hasattr(obj, 'mask') and obj.mask:
|
44 |
+
masks.append(DetectionTask.rle2mask(
|
45 |
+
DetectionTask.string2rle(obj.mask.counts),
|
46 |
+
obj.mask.size
|
47 |
+
))
|
48 |
+
cls_name = obj.category.lower().strip()
|
49 |
+
class_names.append(cls_name)
|
50 |
+
class_ids.append(class_name_to_id[cls_name])
|
51 |
+
confidences.append(obj.score)
|
52 |
+
|
53 |
+
return {
|
54 |
+
'boxes': np.array(boxes),
|
55 |
+
'masks': np.array(masks) if masks else None,
|
56 |
+
'class_ids': np.array(class_ids),
|
57 |
+
'class_names': class_names,
|
58 |
+
'confidences': confidences
|
59 |
+
}
|
60 |
+
|
61 |
+
def process_image(image_path, prompt=TEXT_PROMPT):
|
62 |
+
"""Process a single image with DINO-X"""
|
63 |
+
try:
|
64 |
+
client = initialize_dino_client()
|
65 |
+
_, class_name_to_id = get_class_mappings(prompt)
|
66 |
+
|
67 |
+
# Upload and process image
|
68 |
+
image_url = client.upload_file(image_path)
|
69 |
+
task = DinoxTask(
|
70 |
+
image_url=image_url,
|
71 |
+
prompts=[TextPrompt(text=prompt)],
|
72 |
+
bbox_threshold=0.25,
|
73 |
+
targets=[DetectionTarget.BBox, DetectionTarget.Mask]
|
74 |
+
)
|
75 |
+
client.run_task(task)
|
76 |
+
|
77 |
+
# Process predictions
|
78 |
+
results = process_predictions(task.result.objects, class_name_to_id)
|
79 |
+
|
80 |
+
# Annotate image
|
81 |
+
img = cv2.imread(image_path)
|
82 |
+
detections = sv.Detections(
|
83 |
+
xyxy=results['boxes'],
|
84 |
+
mask=results['masks'].astype(bool) if results['masks'] is not None else None,
|
85 |
+
class_id=results['class_ids']
|
86 |
+
)
|
87 |
+
|
88 |
+
labels = [
|
89 |
+
f"{name} {conf:.2f}"
|
90 |
+
for name, conf in zip(results['class_names'], results['confidences'])
|
91 |
+
]
|
92 |
+
|
93 |
+
# Apply annotations
|
94 |
+
annotator = sv.BoxAnnotator()
|
95 |
+
annotated_frame = annotator.annotate(scene=img.copy(), detections=detections)
|
96 |
+
|
97 |
+
label_annotator = sv.LabelAnnotator()
|
98 |
+
annotated_frame = label_annotator.annotate(
|
99 |
+
scene=annotated_frame,
|
100 |
+
detections=detections,
|
101 |
+
labels=labels
|
102 |
+
)
|
103 |
+
|
104 |
+
if results['masks'] is not None:
|
105 |
+
mask_annotator = sv.MaskAnnotator()
|
106 |
+
annotated_frame = mask_annotator.annotate(
|
107 |
+
scene=annotated_frame,
|
108 |
+
detections=detections
|
109 |
+
)
|
110 |
+
|
111 |
+
output_path = os.path.join(OUTPUT_DIR, "result.jpg")
|
112 |
+
cv2.imwrite(output_path, annotated_frame)
|
113 |
+
|
114 |
+
return output_path
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return f"Error processing image: {str(e)}"
|
118 |
+
|
119 |
+
def process_video(video_path, prompt=TEXT_PROMPT):
|
120 |
+
"""Process a video with DINO-X"""
|
121 |
+
try:
|
122 |
+
client = initialize_dino_client()
|
123 |
+
_, class_name_to_id = get_class_mappings(prompt)
|
124 |
+
|
125 |
+
cap = cv2.VideoCapture(video_path)
|
126 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
127 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
128 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
129 |
+
|
130 |
+
output_path = os.path.join(OUTPUT_DIR, "result.mp4")
|
131 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
132 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
133 |
+
|
134 |
+
frame_count = 0
|
135 |
+
temp_frame_path = os.path.join(TEMP_DIR, "temp_frame.jpg")
|
136 |
+
|
137 |
+
while cap.isOpened():
|
138 |
+
ret, frame = cap.read()
|
139 |
+
if not ret:
|
140 |
+
break
|
141 |
+
|
142 |
+
frame_count += 1
|
143 |
+
if frame_count % 3 != 0: # Process every 3rd frame for speed
|
144 |
+
continue
|
145 |
+
|
146 |
+
cv2.imwrite(temp_frame_path, frame)
|
147 |
+
image_url = client.upload_file(temp_frame_path)
|
148 |
+
|
149 |
+
task = DinoxTask(
|
150 |
+
image_url=image_url,
|
151 |
+
prompts=[TextPrompt(text=prompt)],
|
152 |
+
bbox_threshold=0.25
|
153 |
+
)
|
154 |
+
client.run_task(task)
|
155 |
+
|
156 |
+
results = process_predictions(task.result.objects, class_name_to_id)
|
157 |
+
|
158 |
+
detections = sv.Detections(
|
159 |
+
xyxy=results['boxes'],
|
160 |
+
class_id=results['class_ids']
|
161 |
+
)
|
162 |
+
|
163 |
+
labels = [
|
164 |
+
f"{name} {conf:.2f}"
|
165 |
+
for name, conf in zip(results['class_names'], results['confidences'])
|
166 |
+
]
|
167 |
+
|
168 |
+
annotator = sv.BoxAnnotator()
|
169 |
+
annotated_frame = annotator.annotate(scene=frame.copy(), detections=detections)
|
170 |
+
|
171 |
+
label_annotator = sv.LabelAnnotator()
|
172 |
+
annotated_frame = label_annotator.annotate(
|
173 |
+
scene=annotated_frame,
|
174 |
+
detections=detections,
|
175 |
+
labels=labels
|
176 |
+
)
|
177 |
+
|
178 |
+
out.write(annotated_frame)
|
179 |
+
|
180 |
+
cap.release()
|
181 |
+
out.release()
|
182 |
+
|
183 |
+
if os.path.exists(temp_frame_path):
|
184 |
+
os.remove(temp_frame_path)
|
185 |
+
|
186 |
+
return output_path
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
return f"Error processing video: {str(e)}"
|
190 |
+
|
191 |
+
def process_input(input_file, prompt=TEXT_PROMPT):
|
192 |
+
"""Process either image or video input"""
|
193 |
+
if input_file is None:
|
194 |
+
return "Please provide an input file"
|
195 |
+
|
196 |
+
file_path = input_file.name
|
197 |
+
extension = os.path.splitext(file_path)[1].lower()
|
198 |
+
|
199 |
+
if extension in ['.jpg', '.jpeg', '.png']:
|
200 |
+
return process_image(file_path, prompt)
|
201 |
+
elif extension in ['.mp4', '.avi', '.mov']:
|
202 |
+
return process_video(file_path, prompt)
|
203 |
+
else:
|
204 |
+
return "Unsupported file format. Please use jpg/jpeg/png for images or mp4/avi/mov for videos."
|
205 |
+
|
206 |
+
# Create Gradio interface
|
207 |
+
demo = gr.Interface(
|
208 |
+
fn=process_input,
|
209 |
+
inputs=[
|
210 |
+
gr.File(
|
211 |
+
label="Upload Image/Video",
|
212 |
+
file_types=["image", "video"]
|
213 |
+
),
|
214 |
+
gr.Textbox(
|
215 |
+
label="Detection Prompt",
|
216 |
+
value=TEXT_PROMPT,
|
217 |
+
lines=2
|
218 |
+
)
|
219 |
+
],
|
220 |
+
outputs=gr.Image(label="Detection Result"),
|
221 |
+
title="DINO-X Object Detection",
|
222 |
+
description="Upload an image or video to detect objects using DINO-X. You can modify the detection prompt to specify what objects to look for.",
|
223 |
+
examples=[
|
224 |
+
["assets/demo.png", TEXT_PROMPT],
|
225 |
+
["assets/demo.mp4", TEXT_PROMPT]
|
226 |
+
],
|
227 |
+
cache_examples=True
|
228 |
+
)
|
229 |
+
|
230 |
+
if __name__ == "__main__":
|
231 |
+
demo.launch()
|