Upload 5 files
Browse files- Self_Improving_Search.py +431 -0
- llm_config.py +39 -0
- llm_response_parser.py +177 -0
- llm_wrapper.py +69 -0
- web_scraper.py +149 -0
Self_Improving_Search.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
from typing import List, Dict, Tuple, Union
|
5 |
+
from colorama import Fore, Style
|
6 |
+
import logging
|
7 |
+
import sys
|
8 |
+
from io import StringIO
|
9 |
+
from web_scraper import get_web_content, can_fetch
|
10 |
+
from llm_config import get_llm_config
|
11 |
+
from llm_response_parser import UltimateLLMResponseParser
|
12 |
+
from llm_wrapper import LLMWrapper
|
13 |
+
from urllib.parse import urlparse
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
log_directory = 'logs'
|
17 |
+
if not os.path.exists(log_directory):
|
18 |
+
os.makedirs(log_directory)
|
19 |
+
|
20 |
+
# Configure logger
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
logger.setLevel(logging.INFO)
|
23 |
+
log_file = os.path.join(log_directory, 'llama_output.log')
|
24 |
+
file_handler = logging.FileHandler(log_file)
|
25 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
26 |
+
file_handler.setFormatter(formatter)
|
27 |
+
logger.handlers = []
|
28 |
+
logger.addHandler(file_handler)
|
29 |
+
logger.propagate = False
|
30 |
+
|
31 |
+
# Suppress other loggers
|
32 |
+
for name in ['root', 'duckduckgo_search', 'requests', 'urllib3']:
|
33 |
+
logging.getLogger(name).setLevel(logging.WARNING)
|
34 |
+
logging.getLogger(name).handlers = []
|
35 |
+
logging.getLogger(name).propagate = False
|
36 |
+
|
37 |
+
class OutputRedirector:
|
38 |
+
def __init__(self, stream=None):
|
39 |
+
self.stream = stream or StringIO()
|
40 |
+
self.original_stdout = sys.stdout
|
41 |
+
self.original_stderr = sys.stderr
|
42 |
+
|
43 |
+
def __enter__(self):
|
44 |
+
sys.stdout = self.stream
|
45 |
+
sys.stderr = self.stream
|
46 |
+
return self.stream
|
47 |
+
|
48 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
49 |
+
sys.stdout = self.original_stdout
|
50 |
+
sys.stderr = self.original_stderr
|
51 |
+
|
52 |
+
class EnhancedSelfImprovingSearch:
|
53 |
+
def __init__(self, llm: LLMWrapper, parser: UltimateLLMResponseParser, max_attempts: int = 5):
|
54 |
+
self.llm = llm
|
55 |
+
self.parser = parser
|
56 |
+
self.max_attempts = max_attempts
|
57 |
+
self.llm_config = get_llm_config()
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def initialize_llm():
|
61 |
+
llm_wrapper = LLMWrapper()
|
62 |
+
return llm_wrapper
|
63 |
+
|
64 |
+
def print_thinking(self):
|
65 |
+
print(Fore.MAGENTA + "🧠 Thinking..." + Style.RESET_ALL)
|
66 |
+
|
67 |
+
def print_searching(self):
|
68 |
+
print(Fore.MAGENTA + "📝 Searching..." + Style.RESET_ALL)
|
69 |
+
|
70 |
+
def search_and_improve(self, user_query: str) -> str:
|
71 |
+
attempt = 0
|
72 |
+
while attempt < self.max_attempts:
|
73 |
+
print(f"\n{Fore.CYAN}Search attempt {attempt + 1}:{Style.RESET_ALL}")
|
74 |
+
self.print_searching()
|
75 |
+
|
76 |
+
try:
|
77 |
+
formulated_query, time_range = self.formulate_query(user_query, attempt)
|
78 |
+
|
79 |
+
print(f"{Fore.YELLOW}Original query: {user_query}{Style.RESET_ALL}")
|
80 |
+
print(f"{Fore.YELLOW}Formulated query: {formulated_query}{Style.RESET_ALL}")
|
81 |
+
print(f"{Fore.YELLOW}Time range: {time_range}{Style.RESET_ALL}")
|
82 |
+
|
83 |
+
if not formulated_query:
|
84 |
+
print(f"{Fore.RED}Error: Empty search query. Retrying...{Style.RESET_ALL}")
|
85 |
+
attempt += 1
|
86 |
+
continue
|
87 |
+
|
88 |
+
search_results = self.perform_search(formulated_query, time_range)
|
89 |
+
|
90 |
+
if not search_results:
|
91 |
+
print(f"{Fore.RED}No results found. Retrying with a different query...{Style.RESET_ALL}")
|
92 |
+
attempt += 1
|
93 |
+
continue
|
94 |
+
|
95 |
+
self.display_search_results(search_results)
|
96 |
+
|
97 |
+
selected_urls = self.select_relevant_pages(search_results, user_query)
|
98 |
+
|
99 |
+
if not selected_urls:
|
100 |
+
print(f"{Fore.RED}No relevant URLs found. Retrying...{Style.RESET_ALL}")
|
101 |
+
attempt += 1
|
102 |
+
continue
|
103 |
+
|
104 |
+
print(Fore.MAGENTA + "⚙️ Scraping selected pages..." + Style.RESET_ALL)
|
105 |
+
# Scraping is done without OutputRedirector to ensure messages are visible
|
106 |
+
scraped_content = self.scrape_content(selected_urls)
|
107 |
+
|
108 |
+
if not scraped_content:
|
109 |
+
print(f"{Fore.RED}Failed to scrape content. Retrying...{Style.RESET_ALL}")
|
110 |
+
attempt += 1
|
111 |
+
continue
|
112 |
+
|
113 |
+
self.display_scraped_content(scraped_content)
|
114 |
+
|
115 |
+
self.print_thinking()
|
116 |
+
|
117 |
+
with OutputRedirector() as output:
|
118 |
+
evaluation, decision = self.evaluate_scraped_content(user_query, scraped_content)
|
119 |
+
llm_output = output.getvalue()
|
120 |
+
logger.info(f"LLM Output in evaluate_scraped_content:\n{llm_output}")
|
121 |
+
|
122 |
+
print(f"{Fore.MAGENTA}Evaluation: {evaluation}{Style.RESET_ALL}")
|
123 |
+
print(f"{Fore.MAGENTA}Decision: {decision}{Style.RESET_ALL}")
|
124 |
+
|
125 |
+
if decision == "answer":
|
126 |
+
return self.generate_final_answer(user_query, scraped_content)
|
127 |
+
elif decision == "refine":
|
128 |
+
print(f"{Fore.YELLOW}Refining search...{Style.RESET_ALL}")
|
129 |
+
attempt += 1
|
130 |
+
else:
|
131 |
+
print(f"{Fore.RED}Unexpected decision. Proceeding to answer.{Style.RESET_ALL}")
|
132 |
+
return self.generate_final_answer(user_query, scraped_content)
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
print(f"{Fore.RED}An error occurred during search attempt. Check the log file for details.{Style.RESET_ALL}")
|
136 |
+
logger.error(f"An error occurred during search: {str(e)}", exc_info=True)
|
137 |
+
attempt += 1
|
138 |
+
|
139 |
+
return self.synthesize_final_answer(user_query)
|
140 |
+
|
141 |
+
def evaluate_scraped_content(self, user_query: str, scraped_content: Dict[str, str]) -> Tuple[str, str]:
|
142 |
+
user_query_short = user_query[:200]
|
143 |
+
prompt = f"""
|
144 |
+
Evaluate if the following scraped content contains sufficient information to answer the user's question comprehensively:
|
145 |
+
|
146 |
+
User's question: "{user_query_short}"
|
147 |
+
|
148 |
+
Scraped Content:
|
149 |
+
{self.format_scraped_content(scraped_content)}
|
150 |
+
|
151 |
+
Your task:
|
152 |
+
1. Determine if the scraped content provides enough relevant and detailed information to answer the user's question thoroughly.
|
153 |
+
2. If the information is sufficient, decide to 'answer'. If more information or clarification is needed, decide to 'refine' the search.
|
154 |
+
|
155 |
+
Respond using EXACTLY this format:
|
156 |
+
Evaluation: [Your evaluation of the scraped content]
|
157 |
+
Decision: [ONLY 'answer' if content is sufficient, or 'refine' if more information is needed]
|
158 |
+
"""
|
159 |
+
max_retries = 3
|
160 |
+
for attempt in range(max_retries):
|
161 |
+
try:
|
162 |
+
response_text = self.llm.generate(prompt, max_tokens=200, stop=None)
|
163 |
+
evaluation, decision = self.parse_evaluation_response(response_text)
|
164 |
+
if decision in ['answer', 'refine']:
|
165 |
+
return evaluation, decision
|
166 |
+
except Exception as e:
|
167 |
+
logger.warning(f"Error in evaluate_scraped_content (attempt {attempt + 1}): {str(e)}")
|
168 |
+
|
169 |
+
logger.warning("Failed to get a valid decision in evaluate_scraped_content. Defaulting to 'refine'.")
|
170 |
+
return "Failed to evaluate content.", "refine"
|
171 |
+
|
172 |
+
def parse_evaluation_response(self, response: str) -> Tuple[str, str]:
|
173 |
+
evaluation = ""
|
174 |
+
decision = ""
|
175 |
+
for line in response.strip().split('\n'):
|
176 |
+
if line.startswith('Evaluation:'):
|
177 |
+
evaluation = line.split(':', 1)[1].strip()
|
178 |
+
elif line.startswith('Decision:'):
|
179 |
+
decision = line.split(':', 1)[1].strip().lower()
|
180 |
+
return evaluation, decision
|
181 |
+
|
182 |
+
def formulate_query(self, user_query: str, attempt: int) -> Tuple[str, str]:
|
183 |
+
user_query_short = user_query[:200]
|
184 |
+
prompt = f"""
|
185 |
+
Based on the following user question, formulate a concise and effective search query:
|
186 |
+
"{user_query_short}"
|
187 |
+
Your task:
|
188 |
+
1. Create a search query of 2-5 words that will yield relevant results.
|
189 |
+
2. Determine if a specific time range is needed for the search.
|
190 |
+
Time range options:
|
191 |
+
- 'd': Limit results to the past day. Use for very recent events or rapidly changing information.
|
192 |
+
- 'w': Limit results to the past week. Use for recent events or topics with frequent updates.
|
193 |
+
- 'm': Limit results to the past month. Use for relatively recent information or ongoing events.
|
194 |
+
- 'y': Limit results to the past year. Use for annual events or information that changes yearly.
|
195 |
+
- 'none': No time limit. Use for historical information or topics not tied to a specific time frame.
|
196 |
+
Respond in the following format:
|
197 |
+
Search query: [Your 2-5 word query]
|
198 |
+
Time range: [d/w/m/y/none]
|
199 |
+
Do not provide any additional information or explanation.
|
200 |
+
"""
|
201 |
+
max_retries = 3
|
202 |
+
for retry in range(max_retries):
|
203 |
+
with OutputRedirector() as output:
|
204 |
+
response_text = self.llm.generate(prompt, max_tokens=50, stop=None)
|
205 |
+
llm_output = output.getvalue()
|
206 |
+
logger.info(f"LLM Output in formulate_query:\n{llm_output}")
|
207 |
+
query, time_range = self.parse_query_response(response_text)
|
208 |
+
if query and time_range:
|
209 |
+
return query, time_range
|
210 |
+
return self.fallback_query(user_query), "none"
|
211 |
+
|
212 |
+
def parse_query_response(self, response: str) -> Tuple[str, str]:
|
213 |
+
query = ""
|
214 |
+
time_range = "none"
|
215 |
+
for line in response.strip().split('\n'):
|
216 |
+
if ":" in line:
|
217 |
+
key, value = line.split(":", 1)
|
218 |
+
key = key.strip().lower()
|
219 |
+
value = value.strip()
|
220 |
+
if "query" in key:
|
221 |
+
query = self.clean_query(value)
|
222 |
+
elif "time" in key or "range" in key:
|
223 |
+
time_range = self.validate_time_range(value)
|
224 |
+
return query, time_range
|
225 |
+
|
226 |
+
def clean_query(self, query: str) -> str:
|
227 |
+
query = re.sub(r'["\'\[\]]', '', query)
|
228 |
+
query = re.sub(r'\s+', ' ', query)
|
229 |
+
return query.strip()[:100]
|
230 |
+
|
231 |
+
def validate_time_range(self, time_range: str) -> str:
|
232 |
+
valid_ranges = ['d', 'w', 'm', 'y', 'none']
|
233 |
+
time_range = time_range.lower()
|
234 |
+
return time_range if time_range in valid_ranges else 'none'
|
235 |
+
|
236 |
+
def fallback_query(self, user_query: str) -> str:
|
237 |
+
words = user_query.split()
|
238 |
+
return " ".join(words[:5])
|
239 |
+
|
240 |
+
def perform_search(self, query: str, time_range: str) -> List[Dict]:
|
241 |
+
if not query:
|
242 |
+
return []
|
243 |
+
|
244 |
+
from duckduckgo_search import DDGS
|
245 |
+
|
246 |
+
with DDGS() as ddgs:
|
247 |
+
try:
|
248 |
+
with OutputRedirector() as output:
|
249 |
+
if time_range and time_range != 'none':
|
250 |
+
results = list(ddgs.text(query, timelimit=time_range, max_results=10))
|
251 |
+
else:
|
252 |
+
results = list(ddgs.text(query, max_results=10))
|
253 |
+
ddg_output = output.getvalue()
|
254 |
+
logger.info(f"DDG Output in perform_search:\n{ddg_output}")
|
255 |
+
print(f"{Fore.GREEN}Search query sent to DuckDuckGo: {query}{Style.RESET_ALL}")
|
256 |
+
print(f"{Fore.GREEN}Time range sent to DuckDuckGo: {time_range}{Style.RESET_ALL}")
|
257 |
+
print(f"{Fore.GREEN}Number of results: {len(results)}{Style.RESET_ALL}")
|
258 |
+
return [{'number': i+1, **result} for i, result in enumerate(results)]
|
259 |
+
except Exception as e:
|
260 |
+
print(f"{Fore.RED}Search error: {str(e)}{Style.RESET_ALL}")
|
261 |
+
return []
|
262 |
+
|
263 |
+
def display_search_results(self, results: List[Dict]):
|
264 |
+
print(f"\n{Fore.CYAN}Search Results:{Style.RESET_ALL}")
|
265 |
+
for result in results:
|
266 |
+
print(f"{Fore.GREEN}Result {result['number']}:{Style.RESET_ALL}")
|
267 |
+
print(f"Title: {result.get('title', 'N/A')}")
|
268 |
+
print(f"Snippet: {result.get('body', 'N/A')[:200]}...")
|
269 |
+
print(f"URL: {result.get('href', 'N/A')}\n")
|
270 |
+
|
271 |
+
def select_relevant_pages(self, search_results: List[Dict], user_query: str) -> List[str]:
|
272 |
+
prompt = f"""
|
273 |
+
Given the following search results for the user's question: "{user_query}"
|
274 |
+
Select the 2 most relevant results to scrape and analyze. Explain your reasoning for each selection.
|
275 |
+
|
276 |
+
Search Results:
|
277 |
+
{self.format_results(search_results)}
|
278 |
+
|
279 |
+
Instructions:
|
280 |
+
1. You MUST select exactly 2 result numbers from the search results.
|
281 |
+
2. Choose the results that are most likely to contain comprehensive and relevant information to answer the user's question.
|
282 |
+
3. Provide a brief reason for each selection.
|
283 |
+
|
284 |
+
You MUST respond using EXACTLY this format and nothing else:
|
285 |
+
|
286 |
+
Selected Results: [Two numbers corresponding to the selected results]
|
287 |
+
Reasoning: [Your reasoning for the selections]
|
288 |
+
"""
|
289 |
+
|
290 |
+
max_retries = 3
|
291 |
+
for retry in range(max_retries):
|
292 |
+
with OutputRedirector() as output:
|
293 |
+
response_text = self.llm.generate(prompt, max_tokens=200, stop=None)
|
294 |
+
llm_output = output.getvalue()
|
295 |
+
logger.info(f"LLM Output in select_relevant_pages:\n{llm_output}")
|
296 |
+
|
297 |
+
parsed_response = self.parse_page_selection_response(response_text)
|
298 |
+
if parsed_response and self.validate_page_selection_response(parsed_response, len(search_results)):
|
299 |
+
selected_urls = [result['href'] for result in search_results if result['number'] in parsed_response['selected_results']]
|
300 |
+
|
301 |
+
allowed_urls = [url for url in selected_urls if can_fetch(url)]
|
302 |
+
if allowed_urls:
|
303 |
+
return allowed_urls
|
304 |
+
else:
|
305 |
+
print(f"{Fore.YELLOW}Warning: All selected URLs are disallowed by robots.txt. Retrying selection.{Style.RESET_ALL}")
|
306 |
+
else:
|
307 |
+
print(f"{Fore.YELLOW}Warning: Invalid page selection. Retrying.{Style.RESET_ALL}")
|
308 |
+
|
309 |
+
print(f"{Fore.YELLOW}Warning: All attempts to select relevant pages failed. Falling back to top allowed results.{Style.RESET_ALL}")
|
310 |
+
allowed_urls = [result['href'] for result in search_results if can_fetch(result['href'])][:2]
|
311 |
+
return allowed_urls
|
312 |
+
|
313 |
+
def parse_page_selection_response(self, response: str) -> Dict[str, Union[List[int], str]]:
|
314 |
+
lines = response.strip().split('\n')
|
315 |
+
parsed = {}
|
316 |
+
for line in lines:
|
317 |
+
if line.startswith('Selected Results:'):
|
318 |
+
parsed['selected_results'] = [int(num.strip()) for num in re.findall(r'\d+', line)]
|
319 |
+
elif line.startswith('Reasoning:'):
|
320 |
+
parsed['reasoning'] = line.split(':', 1)[1].strip()
|
321 |
+
return parsed if 'selected_results' in parsed and 'reasoning' in parsed else None
|
322 |
+
|
323 |
+
def validate_page_selection_response(self, parsed_response: Dict[str, Union[List[int], str]], num_results: int) -> bool:
|
324 |
+
if len(parsed_response['selected_results']) != 2:
|
325 |
+
return False
|
326 |
+
if any(num < 1 or num > num_results for num in parsed_response['selected_results']):
|
327 |
+
return False
|
328 |
+
return True
|
329 |
+
|
330 |
+
def format_results(self, results: List[Dict]) -> str:
|
331 |
+
formatted_results = []
|
332 |
+
for result in results:
|
333 |
+
formatted_result = f"{result['number']}. Title: {result.get('title', 'N/A')}\n"
|
334 |
+
formatted_result += f" Snippet: {result.get('body', 'N/A')[:200]}...\n"
|
335 |
+
formatted_result += f" URL: {result.get('href', 'N/A')}\n"
|
336 |
+
formatted_results.append(formatted_result)
|
337 |
+
return "\n".join(formatted_results)
|
338 |
+
|
339 |
+
def scrape_content(self, urls: List[str]) -> Dict[str, str]:
|
340 |
+
scraped_content = {}
|
341 |
+
blocked_urls = []
|
342 |
+
for url in urls:
|
343 |
+
robots_allowed = can_fetch(url)
|
344 |
+
if robots_allowed:
|
345 |
+
content = get_web_content([url])
|
346 |
+
if content:
|
347 |
+
scraped_content.update(content)
|
348 |
+
print(Fore.YELLOW + f"Successfully scraped: {url}" + Style.RESET_ALL)
|
349 |
+
logger.info(f"Successfully scraped: {url}")
|
350 |
+
else:
|
351 |
+
print(Fore.RED + f"Robots.txt disallows scraping of {url}" + Style.RESET_ALL)
|
352 |
+
logger.warning(f"Robots.txt disallows scraping of {url}")
|
353 |
+
else:
|
354 |
+
blocked_urls.append(url)
|
355 |
+
print(Fore.RED + f"Warning: Robots.txt disallows scraping of {url}" + Style.RESET_ALL)
|
356 |
+
logger.warning(f"Robots.txt disallows scraping of {url}")
|
357 |
+
|
358 |
+
print(Fore.CYAN + f"Scraped content received for {len(scraped_content)} URLs" + Style.RESET_ALL)
|
359 |
+
logger.info(f"Scraped content received for {len(scraped_content)} URLs")
|
360 |
+
|
361 |
+
if blocked_urls:
|
362 |
+
print(Fore.RED + f"Warning: {len(blocked_urls)} URL(s) were not scraped due to robots.txt restrictions." + Style.RESET_ALL)
|
363 |
+
logger.warning(f"{len(blocked_urls)} URL(s) were not scraped due to robots.txt restrictions: {', '.join(blocked_urls)}")
|
364 |
+
|
365 |
+
return scraped_content
|
366 |
+
|
367 |
+
def display_scraped_content(self, scraped_content: Dict[str, str]):
|
368 |
+
print(f"\n{Fore.CYAN}Scraped Content:{Style.RESET_ALL}")
|
369 |
+
for url, content in scraped_content.items():
|
370 |
+
print(f"{Fore.GREEN}URL: {url}{Style.RESET_ALL}")
|
371 |
+
print(f"Content: {content[:4000]}...\n")
|
372 |
+
|
373 |
+
def generate_final_answer(self, user_query: str, scraped_content: Dict[str, str]) -> str:
|
374 |
+
user_query_short = user_query[:200]
|
375 |
+
prompt = f"""
|
376 |
+
You are an AI assistant. Provide a comprehensive and detailed answer to the following question using ONLY the information provided in the scraped content. Do not include any references or mention any sources. Answer directly and thoroughly.
|
377 |
+
|
378 |
+
Question: "{user_query_short}"
|
379 |
+
|
380 |
+
Scraped Content:
|
381 |
+
{self.format_scraped_content(scraped_content)}
|
382 |
+
|
383 |
+
Important Instructions:
|
384 |
+
1. Do not use phrases like "Based on the absence of selected results" or similar.
|
385 |
+
2. If the scraped content does not contain enough information to answer the question, say so explicitly and explain what information is missing.
|
386 |
+
3. Provide as much relevant detail as possible from the scraped content.
|
387 |
+
|
388 |
+
Answer:
|
389 |
+
"""
|
390 |
+
max_retries = 3
|
391 |
+
for attempt in range(max_retries):
|
392 |
+
with OutputRedirector() as output:
|
393 |
+
response_text = self.llm.generate(prompt, max_tokens=1024, stop=None)
|
394 |
+
llm_output = output.getvalue()
|
395 |
+
logger.info(f"LLM Output in generate_final_answer:\n{llm_output}")
|
396 |
+
if response_text:
|
397 |
+
logger.info(f"LLM Response:\n{response_text}")
|
398 |
+
return response_text
|
399 |
+
|
400 |
+
error_message = "I apologize, but I couldn't generate a satisfactory answer based on the available information."
|
401 |
+
logger.warning(f"Failed to generate a response after {max_retries} attempts. Returning error message.")
|
402 |
+
return error_message
|
403 |
+
|
404 |
+
def format_scraped_content(self, scraped_content: Dict[str, str]) -> str:
|
405 |
+
formatted_content = []
|
406 |
+
for url, content in scraped_content.items():
|
407 |
+
content = re.sub(r'\s+', ' ', content)
|
408 |
+
formatted_content.append(f"Content from {url}:\n{content}\n")
|
409 |
+
return "\n".join(formatted_content)
|
410 |
+
|
411 |
+
def synthesize_final_answer(self, user_query: str) -> str:
|
412 |
+
prompt = f"""
|
413 |
+
After multiple search attempts, we couldn't find a fully satisfactory answer to the user's question: "{user_query}"
|
414 |
+
|
415 |
+
Please provide the best possible answer you can, acknowledging any limitations or uncertainties.
|
416 |
+
If appropriate, suggest ways the user might refine their question or where they might find more information.
|
417 |
+
|
418 |
+
Respond in a clear, concise, and informative manner.
|
419 |
+
"""
|
420 |
+
try:
|
421 |
+
with OutputRedirector() as output:
|
422 |
+
response_text = self.llm.generate(prompt, max_tokens=self.llm_config.get('max_tokens', 1024), stop=self.llm_config.get('stop', None))
|
423 |
+
llm_output = output.getvalue()
|
424 |
+
logger.info(f"LLM Output in synthesize_final_answer:\n{llm_output}")
|
425 |
+
if response_text:
|
426 |
+
return response_text.strip()
|
427 |
+
except Exception as e:
|
428 |
+
logger.error(f"Error in synthesize_final_answer: {str(e)}", exc_info=True)
|
429 |
+
return "I apologize, but after multiple attempts, I wasn't able to find a satisfactory answer to your question. Please try rephrasing your question or breaking it down into smaller, more specific queries."
|
430 |
+
|
431 |
+
# End of EnhancedSelfImprovingSearch class
|
llm_config.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# llm_config.py
|
2 |
+
|
3 |
+
LLM_TYPE = "llama_cpp" # Options: 'llama_cpp', 'ollama'
|
4 |
+
|
5 |
+
# LLM settings for llama_cpp
|
6 |
+
MODEL_PATH = None # "/filepath/to/your/llama.cpp/model" # Replace with your llama.cpp models filepath
|
7 |
+
|
8 |
+
LLM_CONFIG_LLAMA_CPP = {
|
9 |
+
"llm_type": "llama_cpp",
|
10 |
+
"model_path": MODEL_PATH,
|
11 |
+
"n_ctx": 20000, # context size
|
12 |
+
"n_gpu_layers": 0, # number of layers to offload to GPU (-1 for all, 0 for none)
|
13 |
+
"n_threads": 8, # number of threads to use
|
14 |
+
"temperature": 0.7, # temperature for sampling
|
15 |
+
"top_p": 0.9, # top p for sampling
|
16 |
+
"top_k": 40, # top k for sampling
|
17 |
+
"repeat_penalty": 1.1, # repeat penalty
|
18 |
+
"max_tokens": 1024, # max tokens to generate
|
19 |
+
"stop": ["User:", "\n\n"] # stop sequences
|
20 |
+
}
|
21 |
+
|
22 |
+
# LLM settings for Ollama
|
23 |
+
LLM_CONFIG_OLLAMA = {
|
24 |
+
"llm_type": "ollama",
|
25 |
+
"base_url": "http://localhost:11434", # default Ollama server URL
|
26 |
+
"model_name": "ollama model name", # Replace with your Ollama model name
|
27 |
+
"temperature": 0.7,
|
28 |
+
"top_p": 0.9,
|
29 |
+
"n_ctx": 20000, # context size
|
30 |
+
"stop": ["User:", "\n\n"]
|
31 |
+
}
|
32 |
+
|
33 |
+
def get_llm_config():
|
34 |
+
if LLM_TYPE == "llama_cpp":
|
35 |
+
return LLM_CONFIG_LLAMA_CPP
|
36 |
+
elif LLM_TYPE == "ollama":
|
37 |
+
return LLM_CONFIG_OLLAMA
|
38 |
+
else:
|
39 |
+
raise ValueError(f"Invalid LLM_TYPE: {LLM_TYPE}")
|
llm_response_parser.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Dict, List, Union
|
3 |
+
import logging
|
4 |
+
import json
|
5 |
+
|
6 |
+
# Set up logging
|
7 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
class UltimateLLMResponseParser:
|
11 |
+
def __init__(self):
|
12 |
+
self.decision_keywords = {
|
13 |
+
'refine': ['refine', 'need more info', 'insufficient', 'unclear', 'more research', 'additional search'],
|
14 |
+
'answer': ['answer', 'sufficient', 'enough info', 'can respond', 'adequate', 'comprehensive']
|
15 |
+
}
|
16 |
+
self.section_identifiers = [
|
17 |
+
('decision', r'(?i)decision\s*:'),
|
18 |
+
('reasoning', r'(?i)reasoning\s*:'),
|
19 |
+
('selected_results', r'(?i)selected results\s*:'),
|
20 |
+
('response', r'(?i)response\s*:')
|
21 |
+
]
|
22 |
+
|
23 |
+
def parse_llm_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
24 |
+
logger.info("Starting to parse LLM response")
|
25 |
+
|
26 |
+
# Initialize result dictionary
|
27 |
+
result = {
|
28 |
+
'decision': None,
|
29 |
+
'reasoning': None,
|
30 |
+
'selected_results': [],
|
31 |
+
'response': None
|
32 |
+
}
|
33 |
+
|
34 |
+
# Define parsing strategies
|
35 |
+
parsing_strategies = [
|
36 |
+
self._parse_structured_response,
|
37 |
+
self._parse_json_response,
|
38 |
+
self._parse_unstructured_response,
|
39 |
+
self._parse_implicit_response
|
40 |
+
]
|
41 |
+
|
42 |
+
# Try each parsing strategy
|
43 |
+
for strategy in parsing_strategies:
|
44 |
+
try:
|
45 |
+
parsed_result = strategy(response)
|
46 |
+
if self._is_valid_result(parsed_result):
|
47 |
+
result.update(parsed_result)
|
48 |
+
logger.info(f"Successfully parsed using strategy: {strategy.__name__}")
|
49 |
+
break
|
50 |
+
except Exception as e:
|
51 |
+
logger.warning(f"Error in parsing strategy {strategy.__name__}: {str(e)}")
|
52 |
+
|
53 |
+
# If no strategy succeeded, use fallback parsing
|
54 |
+
if not self._is_valid_result(result):
|
55 |
+
logger.warning("All parsing strategies failed. Using fallback parsing.")
|
56 |
+
result = self._fallback_parsing(response)
|
57 |
+
|
58 |
+
# Post-process the result
|
59 |
+
result = self._post_process_result(result)
|
60 |
+
|
61 |
+
logger.info("Finished parsing LLM response")
|
62 |
+
return result
|
63 |
+
|
64 |
+
def _parse_structured_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
65 |
+
result = {}
|
66 |
+
for key, pattern in self.section_identifiers:
|
67 |
+
match = re.search(f'{pattern}(.*?)(?={"|".join([p for k, p in self.section_identifiers if k != key])}|$)', response, re.IGNORECASE | re.DOTALL)
|
68 |
+
if match:
|
69 |
+
result[key] = match.group(1).strip()
|
70 |
+
|
71 |
+
if 'selected_results' in result:
|
72 |
+
result['selected_results'] = self._extract_numbers(result['selected_results'])
|
73 |
+
|
74 |
+
return result
|
75 |
+
|
76 |
+
def _parse_json_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
77 |
+
try:
|
78 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
79 |
+
if json_match:
|
80 |
+
json_str = json_match.group(0)
|
81 |
+
parsed_json = json.loads(json_str)
|
82 |
+
return {k: v for k, v in parsed_json.items() if k in ['decision', 'reasoning', 'selected_results', 'response']}
|
83 |
+
except json.JSONDecodeError:
|
84 |
+
pass
|
85 |
+
return {}
|
86 |
+
|
87 |
+
def _parse_unstructured_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
88 |
+
result = {}
|
89 |
+
lines = response.split('\n')
|
90 |
+
current_section = None
|
91 |
+
|
92 |
+
for line in lines:
|
93 |
+
section_match = re.match(r'(.+?)[:.-](.+)', line)
|
94 |
+
if section_match:
|
95 |
+
key = self._match_section_to_key(section_match.group(1))
|
96 |
+
if key:
|
97 |
+
current_section = key
|
98 |
+
result[key] = section_match.group(2).strip()
|
99 |
+
elif current_section:
|
100 |
+
result[current_section] += ' ' + line.strip()
|
101 |
+
|
102 |
+
if 'selected_results' in result:
|
103 |
+
result['selected_results'] = self._extract_numbers(result['selected_results'])
|
104 |
+
|
105 |
+
return result
|
106 |
+
|
107 |
+
def _parse_implicit_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
108 |
+
result = {}
|
109 |
+
|
110 |
+
decision = self._infer_decision(response)
|
111 |
+
if decision:
|
112 |
+
result['decision'] = decision
|
113 |
+
|
114 |
+
numbers = self._extract_numbers(response)
|
115 |
+
if numbers:
|
116 |
+
result['selected_results'] = numbers
|
117 |
+
|
118 |
+
if not result:
|
119 |
+
result['response'] = response.strip()
|
120 |
+
|
121 |
+
return result
|
122 |
+
|
123 |
+
def _fallback_parsing(self, response: str) -> Dict[str, Union[str, List[int]]]:
|
124 |
+
result = {
|
125 |
+
'decision': self._infer_decision(response),
|
126 |
+
'reasoning': None,
|
127 |
+
'selected_results': self._extract_numbers(response),
|
128 |
+
'response': response.strip()
|
129 |
+
}
|
130 |
+
return result
|
131 |
+
|
132 |
+
def _post_process_result(self, result: Dict[str, Union[str, List[int]]]) -> Dict[str, Union[str, List[int]]]:
|
133 |
+
if result['decision'] not in ['refine', 'answer']:
|
134 |
+
result['decision'] = self._infer_decision(str(result))
|
135 |
+
|
136 |
+
if not isinstance(result['selected_results'], list):
|
137 |
+
result['selected_results'] = self._extract_numbers(str(result['selected_results']))
|
138 |
+
|
139 |
+
result['selected_results'] = result['selected_results'][:2]
|
140 |
+
|
141 |
+
if not result['reasoning']:
|
142 |
+
result['reasoning'] = f"Based on the {'presence' if result['selected_results'] else 'absence'} of selected results and the overall content."
|
143 |
+
|
144 |
+
if not result['response']:
|
145 |
+
result['response'] = result.get('reasoning', 'No clear response found.')
|
146 |
+
|
147 |
+
return result
|
148 |
+
|
149 |
+
def _match_section_to_key(self, section: str) -> Union[str, None]:
|
150 |
+
for key, pattern in self.section_identifiers:
|
151 |
+
if re.search(pattern, section, re.IGNORECASE):
|
152 |
+
return key
|
153 |
+
return None
|
154 |
+
|
155 |
+
def _extract_numbers(self, text: str) -> List[int]:
|
156 |
+
return [int(num) for num in re.findall(r'\b(?:10|[1-9])\b', text)]
|
157 |
+
|
158 |
+
def _infer_decision(self, text: str) -> str:
|
159 |
+
text = text.lower()
|
160 |
+
refine_score = sum(text.count(keyword) for keyword in self.decision_keywords['refine'])
|
161 |
+
answer_score = sum(text.count(keyword) for keyword in self.decision_keywords['answer'])
|
162 |
+
return 'refine' if refine_score > answer_score else 'answer'
|
163 |
+
|
164 |
+
def _is_valid_result(self, result: Dict[str, Union[str, List[int]]]) -> bool:
|
165 |
+
return bool(result.get('decision') or result.get('response') or result.get('selected_results'))
|
166 |
+
|
167 |
+
# Example usage
|
168 |
+
if __name__ == "__main__":
|
169 |
+
parser = UltimateLLMResponseParser()
|
170 |
+
test_response = """
|
171 |
+
Decision: answer
|
172 |
+
Reasoning: The scraped content provides comprehensive information about recent AI breakthroughs.
|
173 |
+
Selected Results: 1, 3
|
174 |
+
Response: Based on the scraped content, there have been several significant breakthroughs in AI recently...
|
175 |
+
"""
|
176 |
+
parsed_result = parser.parse_llm_response(test_response)
|
177 |
+
print(json.dumps(parsed_result, indent=2))
|
llm_wrapper.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
from llm_config import get_llm_config
|
5 |
+
|
6 |
+
class LLMWrapper:
|
7 |
+
def __init__(self):
|
8 |
+
self.llm_config = get_llm_config()
|
9 |
+
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
|
10 |
+
if self.llm_type == 'llama_cpp':
|
11 |
+
self.llm = self._initialize_llama_cpp()
|
12 |
+
elif self.llm_type == 'ollama':
|
13 |
+
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
|
14 |
+
self.model_name = self.llm_config.get('model_name', 'your_model_name')
|
15 |
+
else:
|
16 |
+
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
17 |
+
|
18 |
+
def _initialize_llama_cpp(self):
|
19 |
+
if self.llm_config.get('model_path') is None:
|
20 |
+
return Llama.from_pretrained(
|
21 |
+
repo_id="Tien203/llama.cpp",
|
22 |
+
filename="Llama-2-7b-hf-q4_0.gguf",
|
23 |
+
)
|
24 |
+
else:
|
25 |
+
return Llama(
|
26 |
+
model_path=self.llm_config.get('model_path'),
|
27 |
+
n_ctx=self.llm_config.get('n_ctx', 2048),
|
28 |
+
n_gpu_layers=self.llm_config.get('n_gpu_layers', 0),
|
29 |
+
n_threads=self.llm_config.get('n_threads', 8),
|
30 |
+
verbose=False
|
31 |
+
)
|
32 |
+
|
33 |
+
def generate(self, prompt, **kwargs):
|
34 |
+
if self.llm_type == 'llama_cpp':
|
35 |
+
llama_kwargs = self._prepare_llama_kwargs(kwargs)
|
36 |
+
response = self.llm(prompt, **llama_kwargs)
|
37 |
+
return response['choices'][0]['text'].strip()
|
38 |
+
elif self.llm_type == 'ollama':
|
39 |
+
return self._ollama_generate(prompt, **kwargs)
|
40 |
+
else:
|
41 |
+
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
42 |
+
|
43 |
+
def _ollama_generate(self, prompt, **kwargs):
|
44 |
+
url = f"{self.base_url}/api/generate"
|
45 |
+
data = {
|
46 |
+
'model': self.model_name,
|
47 |
+
'prompt': prompt,
|
48 |
+
'options': {
|
49 |
+
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
50 |
+
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
51 |
+
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
52 |
+
'num_predict': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 1024)),
|
53 |
+
}
|
54 |
+
}
|
55 |
+
response = requests.post(url, json=data, stream=True)
|
56 |
+
if response.status_code != 200:
|
57 |
+
raise Exception(f"Ollama API request failed with status {response.status_code}: {response.text}")
|
58 |
+
text = ''.join(json.loads(line)['response'] for line in response.iter_lines() if line)
|
59 |
+
return text.strip()
|
60 |
+
|
61 |
+
def _prepare_llama_kwargs(self, kwargs):
|
62 |
+
llama_kwargs = {
|
63 |
+
'max_tokens': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 1024)),
|
64 |
+
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
65 |
+
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
66 |
+
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
67 |
+
'echo': False,
|
68 |
+
}
|
69 |
+
return llama_kwargs
|
web_scraper.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
from urllib.robotparser import RobotFileParser
|
4 |
+
from urllib.parse import urlparse, urljoin
|
5 |
+
import time
|
6 |
+
import logging
|
7 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
class WebScraper:
|
15 |
+
def __init__(self, user_agent="WebLLMAssistant/1.0 (+https://github.com/YourUsername/Web-LLM-Assistant-Llama-cpp)",
|
16 |
+
rate_limit=1, timeout=10, max_retries=3):
|
17 |
+
self.session = requests.Session()
|
18 |
+
self.session.headers.update({"User-Agent": user_agent})
|
19 |
+
self.robot_parser = RobotFileParser()
|
20 |
+
self.rate_limit = rate_limit
|
21 |
+
self.timeout = timeout
|
22 |
+
self.max_retries = max_retries
|
23 |
+
self.last_request_time = {}
|
24 |
+
|
25 |
+
def can_fetch(self, url):
|
26 |
+
parsed_url = urlparse(url)
|
27 |
+
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
|
28 |
+
self.robot_parser.set_url(robots_url)
|
29 |
+
try:
|
30 |
+
self.robot_parser.read()
|
31 |
+
return self.robot_parser.can_fetch(self.session.headers["User-Agent"], url)
|
32 |
+
except Exception as e:
|
33 |
+
logger.warning(f"Error reading robots.txt for {url}: {e}")
|
34 |
+
return True # Assume allowed if robots.txt can't be read
|
35 |
+
|
36 |
+
def respect_rate_limit(self, url):
|
37 |
+
domain = urlparse(url).netloc
|
38 |
+
current_time = time.time()
|
39 |
+
if domain in self.last_request_time:
|
40 |
+
time_since_last_request = current_time - self.last_request_time[domain]
|
41 |
+
if time_since_last_request < self.rate_limit:
|
42 |
+
time.sleep(self.rate_limit - time_since_last_request)
|
43 |
+
self.last_request_time[domain] = time.time()
|
44 |
+
|
45 |
+
def scrape_page(self, url):
|
46 |
+
if not self.can_fetch(url):
|
47 |
+
logger.info(f"Robots.txt disallows scraping: {url}")
|
48 |
+
return None
|
49 |
+
|
50 |
+
for attempt in range(self.max_retries):
|
51 |
+
try:
|
52 |
+
self.respect_rate_limit(url)
|
53 |
+
response = self.session.get(url, timeout=self.timeout)
|
54 |
+
response.raise_for_status()
|
55 |
+
return self.extract_content(response.text, url)
|
56 |
+
except requests.RequestException as e:
|
57 |
+
logger.warning(f"Error scraping {url} (attempt {attempt + 1}/{self.max_retries}): {e}")
|
58 |
+
if attempt == self.max_retries - 1:
|
59 |
+
logger.error(f"Failed to scrape {url} after {self.max_retries} attempts")
|
60 |
+
return None
|
61 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
62 |
+
|
63 |
+
def extract_content(self, html, url):
|
64 |
+
soup = BeautifulSoup(html, 'html.parser')
|
65 |
+
|
66 |
+
# Remove unwanted elements
|
67 |
+
for element in soup(["script", "style", "nav", "footer", "header"]):
|
68 |
+
element.decompose()
|
69 |
+
|
70 |
+
# Extract title
|
71 |
+
title = soup.title.string if soup.title else ""
|
72 |
+
|
73 |
+
# Try to find main content
|
74 |
+
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
|
75 |
+
|
76 |
+
if main_content:
|
77 |
+
paragraphs = main_content.find_all('p')
|
78 |
+
else:
|
79 |
+
paragraphs = soup.find_all('p')
|
80 |
+
|
81 |
+
# Extract text from paragraphs
|
82 |
+
text = ' '.join([p.get_text().strip() for p in paragraphs])
|
83 |
+
|
84 |
+
# If no paragraphs found, get all text
|
85 |
+
if not text:
|
86 |
+
text = soup.get_text()
|
87 |
+
|
88 |
+
# Clean up whitespace
|
89 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
90 |
+
|
91 |
+
# Extract and resolve links
|
92 |
+
links = [urljoin(url, a['href']) for a in soup.find_all('a', href=True)]
|
93 |
+
|
94 |
+
return {
|
95 |
+
"url": url,
|
96 |
+
"title": title,
|
97 |
+
"content": text[:2400], # Limit to first 2400 characters
|
98 |
+
"links": links[:10] # Limit to first 10 links
|
99 |
+
}
|
100 |
+
|
101 |
+
def scrape_multiple_pages(urls, max_workers=5):
|
102 |
+
scraper = WebScraper()
|
103 |
+
results = {}
|
104 |
+
|
105 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
106 |
+
future_to_url = {executor.submit(scraper.scrape_page, url): url for url in urls}
|
107 |
+
for future in as_completed(future_to_url):
|
108 |
+
url = future_to_url[future]
|
109 |
+
try:
|
110 |
+
data = future.result()
|
111 |
+
if data:
|
112 |
+
results[url] = data
|
113 |
+
logger.info(f"Successfully scraped: {url}")
|
114 |
+
else:
|
115 |
+
logger.warning(f"Failed to scrape: {url}")
|
116 |
+
except Exception as exc:
|
117 |
+
logger.error(f"{url} generated an exception: {exc}")
|
118 |
+
|
119 |
+
return results
|
120 |
+
|
121 |
+
# Function to integrate with your main system
|
122 |
+
def get_web_content(urls):
|
123 |
+
scraped_data = scrape_multiple_pages(urls)
|
124 |
+
return {url: data['content'] for url, data in scraped_data.items() if data}
|
125 |
+
|
126 |
+
# Standalone can_fetch function
|
127 |
+
def can_fetch(url):
|
128 |
+
parsed_url = urlparse(url)
|
129 |
+
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
|
130 |
+
rp = RobotFileParser()
|
131 |
+
rp.set_url(robots_url)
|
132 |
+
try:
|
133 |
+
rp.read()
|
134 |
+
return rp.can_fetch("*", url)
|
135 |
+
except Exception as e:
|
136 |
+
logger.warning(f"Error reading robots.txt for {url}: {e}")
|
137 |
+
return True # Assume allowed if robots.txt can't be read
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
test_urls = [
|
141 |
+
"https://en.wikipedia.org/wiki/Web_scraping",
|
142 |
+
"https://example.com",
|
143 |
+
"https://www.python.org"
|
144 |
+
]
|
145 |
+
scraped_content = get_web_content(test_urls)
|
146 |
+
for url, content in scraped_content.items():
|
147 |
+
print(f"Content from {url}:")
|
148 |
+
print(content[:500]) # Print first 500 characters
|
149 |
+
print("\n---\n")
|