Spaces:
Build error
Build error
File size: 5,898 Bytes
a639170 45cbcdf 17345fb 45cbcdf a639170 17345fb a639170 17345fb a639170 4bc3210 17345fb b2ae432 4bc3210 17345fb 4bc3210 5307b4f 17345fb b2ae432 17345fb b2ae432 17345fb 45cbcdf 17345fb 45cbcdf 17345fb b2ae432 17345fb b2ae432 17345fb b2ae432 17345fb b2ae432 a639170 17345fb a639170 17345fb b2ae432 a639170 17345fb a639170 79cdd30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import json
import time
import logging
from pathlib import Path
from typing import List, Dict, Optional
from dataclasses import dataclass
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
from llama_cpp import Llama
from fastapi.encoders import jsonable_encoder
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ProductSpec:
name: str
description: Optional[str] = None
price: Optional[float] = None
attributes: Dict[str, str] = None
tables: List[Dict] = None
def to_dict(self):
return jsonable_encoder(self)
class PDFProcessor:
def __init__(self):
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
# self.llm = self._initialize_llm("llama-2-7b.Q2_K.gguf")
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf")
self.output_dir = Path("./output")
self.output_dir.mkdir(exist_ok=True)
def _initialize_emb_model(self, model_name):
try:
from sentence_transformers import SentenceTransformer
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
except:
# Load model directly
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name)
model = AutoModel.from_pretrained("sentence-transformers/" + model_name)
return model
def _initialize_llm(self, model_name):
"""Initialize LLM with automatic download if needed"""
# model_path = os.path.join("models/", model_name)
# if os.path.exists(model_path):
# return Llama(
# model_path=model_path,
# n_ctx=1024,
# n_gpu_layers=-1,
# n_threads=os.cpu_count() - 1,
# verbose=False
# )
return Llama.from_pretrained(
repo_id="TheBloke/deepseek-llm-7B-base-GGUF",
filename=model_name,
)
def process_pdf(self, pdf_path: str) -> Dict:
"""Process PDF using PyMuPDF"""
start_time = time.time()
# Open PDF
doc = fitz.open(pdf_path)
text_blocks = []
tables = []
# Extract text and tables
for page_num, page in enumerate(doc):
# Extract text blocks
text_blocks.extend(self._extract_text_blocks(page))
# Extract tables
tables.extend(self._extract_tables(page, page_num))
# Process text blocks with LLM
products = []
for block in text_blocks:
product = self._process_text_block(block)
if product:
product.tables = tables
products.append(product.to_dict())
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
return {"products": products, "tables": tables}
def _extract_text_blocks(self, page) -> List[str]:
"""Extract text blocks from a PDF page"""
blocks = []
for block in page.get_text("blocks"):
blocks.append(block[4]) # The text content is at index 4
return blocks
def _extract_tables(self, page, page_num: int) -> List[Dict]:
"""Extract tables from a PDF page"""
tables = []
try:
tab = page.find_tables()
if tab.tables:
for table_idx, table in enumerate(tab.tables):
table_data = table.extract()
if table_data:
tables.append({
"page": page_num + 1,
"cells": table_data,
"header": table.header.names if table.header else [],
"content": table_data
})
except Exception as e:
logger.warning(f"Error extracting tables from page {page_num}: {e}")
return tables
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
"""Process text block with LLM"""
prompt = self._generate_query_prompt(text)
try:
response = self.llm.create_chat_completion(
messages=[{"role": "user", "content": prompt}],
temperature=0.1,
max_tokens=512
)
return self._parse_response(response['choices'][0]['message']['content'])
except Exception as e:
logger.warning(f"Error processing text block: {e}")
return None
def _generate_query_prompt(self, text: str) -> str:
"""Generate extraction prompt"""
return f"""Extract product specifications from this text:
{text}
Return JSON format:
{{
"name": "product name",
"description": "product description",
"price": numeric_price,
"attributes": {{ "key": "value" }}
}}"""
def _parse_response(self, response: str) -> Optional[ProductSpec]:
"""Parse LLM response"""
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
data = json.loads(response[json_start:json_end])
return ProductSpec(
name=data.get('name', ''),
description=data.get('description'),
price=data.get('price'),
attributes=data.get('attributes', {})
)
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"Parse error: {e}")
return None
def process_pdf_catalog(pdf_path: str):
processor = PDFProcessor()
try:
result = processor.process_pdf(pdf_path)
return result, "Processing completed successfully!"
except Exception as e:
logger.error(f"Processing failed: {e}")
return {}, "Error processing PDF"
|