Spaces:
Build error
Build error
File size: 7,023 Bytes
f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b 8054eda 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b f8daace 29de06b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import json
import time
import logging
from pathlib import Path
from typing import List, Dict, Optional
from dataclasses import dataclass
from fastapi.encoders import jsonable_encoder
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
from mlc_llm import MLCEngine
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ProductSpec:
name: str
description: Optional[str] = None
price: Optional[float] = None
attributes: Dict[str, str] = None
tables: List[Dict] = None
def to_dict(self):
return jsonable_encoder(self)
class PDFProcessor:
def __init__(self):
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
self.llm = self._initialize_llm()
self.output_dir = Path("./output")
self.output_dir.mkdir(exist_ok=True)
def _initialize_emb_model(self, model_name):
try:
return SentenceTransformer(f'sentence-transformers/{model_name}')
except Exception as e:
logger.warning(f"SentenceTransformer failed: {e}")
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained(f"sentence-transformers/{model_name}")
model = AutoModel.from_pretrained(f"sentence-transformers/{model_name}")
return model
def _initialize_llm(self):
"""Initialize MLC LLM engine with optimized settings"""
try:
# return MLCEngine(model="HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC")
return MLCEngine(model="HF://mlc-ai/Llama-2-7B-q4f16_1-MLC")
except Exception as e:
logger.error(f"Failed to initialize MLC Engine: {e}")
raise
def process_pdf(self, pdf_path: str) -> Dict:
"""Main PDF processing pipeline"""
start_time = time.time()
try:
doc = fitz.open(pdf_path)
except Exception as e:
logger.error(f"Failed to open PDF: {e}")
raise RuntimeError("Cannot open PDF file.") from e
text_blocks = []
tables = []
for page_num, page in enumerate(doc):
blocks = self._extract_text_blocks(page)
text_blocks.extend([b for b in blocks if len(b.strip()) >= 10])
tables.extend(self._extract_tables(page, page_num))
products = []
for idx, block in enumerate(text_blocks):
product = self._process_text_block(block)
if product and self._is_valid_product(product):
product.tables = tables
products.append(product.to_dict())
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
return {"products": products, "tables": tables}
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
"""Process text with MLC LLM using optimized prompt"""
try:
prompt = self._generate_query_prompt(text)
response = self.llm.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
stream=False
)
return self._parse_response(response.choices[0].message.content)
except Exception as e:
logger.warning(f"Error processing text block: {e}")
return None
def _generate_query_prompt(self, text: str) -> str:
"""Generate structured prompt for better JSON response"""
return f"""Extract product specifications as JSON from this text:
Text: {text}
Return valid JSON with exactly these keys:
- name (string)
- description (string, optional)
- price (number, optional)
- attributes (object with key-value pairs, optional)
Example:
{{
"name": "Example Product",
"description": "High-quality example item",
"price": 99.99,
"attributes": {{"color": "red", "size": "XL"}}
}}"""
def _is_valid_product(self, product: ProductSpec) -> bool:
"""Validate extracted product data"""
return any([
product.name,
product.description,
product.price,
product.attributes
])
def _extract_text_blocks(self, page) -> List[str]:
"""Extract text blocks from a PDF page using PyMuPDF's blocks method."""
blocks = []
for block in page.get_text("blocks"):
# block[4] contains the text content
text = block[4].strip()
if text:
blocks.append(text)
return blocks
def _extract_tables(self, page, page_num: int) -> List[Dict]:
"""Extract tables from a PDF page using PyMuPDF's table extraction (if available)."""
tables = []
try:
tab = page.find_tables()
if tab and hasattr(tab, 'tables') and tab.tables:
for table in tab.tables:
table_data = table.extract()
if table_data:
tables.append({
"page": page_num + 1,
"cells": table_data,
"header": table.header.names if table.header else [],
"content": table_data
})
except Exception as e:
logger.warning(f"Error extracting tables from page {page_num + 1}: {e}")
return tables
def _parse_response(self, response: str) -> Optional[ProductSpec]:
"""Parse the LLM's response to extract a product specification."""
try:
json_start = response.find('{')
json_end = response.rfind('}') + 1
json_str = response[json_start:json_end].strip()
if not json_str:
raise ValueError("No JSON content found in response.")
data = json.loads(json_str)
# If the returned JSON is essentially empty, return None
if all(not data.get(key) for key in ['name', 'description', 'price', 'attributes']):
return None
return ProductSpec(
name=data.get('name', ''),
description=data.get('description'),
price=data.get('price'),
attributes=data.get('attributes', {})
)
except (json.JSONDecodeError, KeyError, ValueError) as e:
logger.warning(f"Parse error: {e} in response: {response}")
return None
def process_pdf_catalog(pdf_path: str):
processor = PDFProcessor()
try:
result = processor.process_pdf(pdf_path)
return result, "Processing completed successfully!"
except Exception as e:
logger.error(f"Processing failed: {e}")
return {}, "Error processing PDF"
if __name__ == "__main__":
pdf_path = "path/to/your/pdf_file.pdf"
result, message = process_pdf_catalog(pdf_path)
print(json.dumps(result, indent=2), message)
|