Spaces:
Build error
Build error
import os | |
import json | |
import time | |
import logging | |
from pathlib import Path | |
from typing import List, Dict, Optional | |
from dataclasses import dataclass | |
from fastapi.encoders import jsonable_encoder | |
# from sentence_transformers import SentenceTransformer | |
# from llama_cpp import Llama | |
# Fix: Dynamically adjust the module path if magic_pdf is in a non-standard location | |
try: | |
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader | |
from magic_pdf.data.dataset import PymuDocDataset | |
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze | |
from magic_pdf.config.enums import SupportedPdfParseMethod | |
except ModuleNotFoundError as e: | |
logging.error(f"Failed to import magic_pdf modules: {e}") | |
logging.info("Ensure that the magic_pdf package is installed and accessible in your Python environment.") | |
raise e | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ProductSpec: | |
name: str | |
description: Optional[str] = None | |
price: Optional[float] = None | |
attributes: Dict[str, str] = None | |
tables: List[Dict] = None | |
def to_dict(self): | |
return jsonable_encoder(self) | |
class PDFProcessor: | |
def __init__(self): | |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2") | |
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q5_K_M.gguf") | |
self.output_dir = Path("./output") | |
self.output_dir.mkdir(exist_ok=True) | |
def _initialize_emb_model(self, model_name): | |
# try: | |
# model = SentenceTransformer("sentence-transformers/" + model_name) | |
# model.save('models/'+ model_name) | |
# return model | |
# except: | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModel | |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2") | |
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2") | |
return model | |
def _initialize_llm(self, model_name): | |
"""Initialize LLM with automatic download if needed""" | |
""" | |
model_path = os.path.join("models/", model_name) | |
if os.path.exists(model_path): | |
return Llama( | |
model_path=model_path, | |
n_ctx=2048, | |
n_gpu_layers=35 if os.getenv('USE_GPU') else 0, | |
n_threads=os.cpu_count() - 1, | |
verbose=False | |
) | |
else: | |
return Llama.from_pretrained( | |
repo_id="TheBloke/deepseek-llm-7B-base-GGUF", | |
filename=model_name, | |
n_ctx=2048, | |
n_threads=os.cpu_count() - 1, | |
n_gpu_layers=35 if os.getenv('USE_GPU') else 0, | |
verbose=False | |
) | |
""" | |
# Load model directly | |
from transformers import AutoModel | |
model = AutoModel.from_pretrained("TheBloke/deepseek-llm-7B-base-GGUF") | |
return model | |
def process_pdf(self, pdf_path: str) -> Dict: | |
"""Process PDF using MinerU pipeline""" | |
start_time = time.time() | |
# Initialize MinerU components | |
local_image_dir = self.output_dir / "images" | |
local_md_dir = self.output_dir | |
image_dir = str(local_image_dir.name) | |
os.makedirs(local_image_dir, exist_ok=True) | |
try: | |
image_writer = FileBasedDataWriter(str(local_image_dir)) | |
md_writer = FileBasedDataWriter(str(local_md_dir)) | |
# Read PDF | |
reader = FileBasedDataReader("") | |
pdf_bytes = reader.read(pdf_path) | |
# Create dataset and process | |
ds = PymuDocDataset(pdf_bytes) | |
if ds.classify() == SupportedPdfParseMethod.OCR: | |
infer_result = ds.apply(doc_analyze, ocr=True) | |
pipe_result = infer_result.pipe_ocr_mode(image_writer) | |
else: | |
infer_result = ds.apply(doc_analyze, ocr=False) | |
pipe_result = infer_result.pipe_txt_mode(image_writer) | |
# Get structured content | |
middle_json = pipe_result.get_middle_json() | |
tables = self._extract_tables(middle_json) | |
text_blocks = self._extract_text_blocks(middle_json) | |
# Process text blocks with LLM | |
products = [] | |
for block in text_blocks: | |
product = self._process_text_block(block) | |
if product: | |
product.tables = tables | |
products.append(product.to_dict()) | |
logger.info(f"Processed {len(products)} products in {time.time()-start_time:.2f}s") | |
return {"products": products, "tables": tables} | |
except Exception as e: | |
logger.error(f"Error during PDF processing: {e}") | |
raise RuntimeError("PDF processing failed.") from e | |
def _extract_tables(self, middle_json: Dict) -> List[Dict]: | |
"""Extract tables from MinerU's middle JSON""" | |
tables = [] | |
for page in middle_json.get('pages', []): | |
for table in page.get('tables', []): | |
tables.append({ | |
"page": page.get('page_number'), | |
"cells": table.get('cells', []), | |
"header": table.get('header', []), | |
"content": table.get('content', []) | |
}) | |
return tables | |
def _extract_text_blocks(self, middle_json: Dict) -> List[str]: | |
"""Extract text blocks from MinerU's middle JSON""" | |
text_blocks = [] | |
for page in middle_json.get('pages', []): | |
for block in page.get('blocks', []): | |
if block.get('type') == 'text': | |
text_blocks.append(block.get('text', '')) | |
return text_blocks | |
def _process_text_block(self, text: str) -> Optional[ProductSpec]: | |
"""Process text block with LLM""" | |
prompt = self._generate_query_prompt(text) | |
try: | |
response = self.llm.create_chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.1, | |
max_tokens=512 | |
) | |
return self._parse_response(response['choices'][0]['message']['content']) | |
except Exception as e: | |
logger.warning(f"Error processing text block: {e}") | |
return None | |
def _generate_query_prompt(self, text: str) -> str: | |
"""Generate extraction prompt""" | |
return f"""Extract product specifications from this text: | |
{text} | |
Return JSON format: | |
{{ | |
"name": "product name", | |
"description": "product description", | |
"price": numeric_price, | |
"attributes": {{ "key": "value" }} | |
}}""" | |
def _parse_response(self, response: str) -> Optional[ProductSpec]: | |
"""Parse LLM response""" | |
try: | |
json_start = response.find('{') | |
json_end = response.rfind('}') + 1 | |
data = json.loads(response[json_start:json_end]) | |
return ProductSpec( | |
name=data.get('name', ''), | |
description=data.get('description'), | |
price=data.get('price'), | |
attributes=data.get('attributes', {}) | |
) | |
except (json.JSONDecodeError, KeyError) as e: | |
logger.warning(f"Parse error: {e}") | |
return None | |
def process_pdf_catalog(pdf_path: str): | |
processor = PDFProcessor() | |
try: | |
result = processor.process_pdf(pdf_path) | |
return result, "Processing completed successfully!" | |
except Exception as e: | |
logger.error(f"Processing failed: {e}") | |
return {}, "Error processing PDF" | |