Spaces:
Build error
Build error
Upload 2 files
Browse files
app.py
CHANGED
@@ -41,7 +41,7 @@ demo = gr.Interface(
|
|
41 |
examples=pdf_examples,
|
42 |
title="Open Source PDF Catalog Parser",
|
43 |
description="Efficient PDF catalog processing using fitz and OpenLLM",
|
44 |
-
article="Uses
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
|
|
41 |
examples=pdf_examples,
|
42 |
title="Open Source PDF Catalog Parser",
|
43 |
description="Efficient PDF catalog processing using fitz and OpenLLM",
|
44 |
+
article="Uses PyMuPDF for layout analysis and Llama-CPP for structured extraction"
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
main.py
CHANGED
@@ -5,10 +5,10 @@ import logging
|
|
5 |
from pathlib import Path
|
6 |
from typing import List, Dict, Optional
|
7 |
from dataclasses import dataclass
|
|
|
8 |
import fitz # PyMuPDF
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from llama_cpp import Llama
|
11 |
-
from fastapi.encoders import jsonable_encoder
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
@@ -29,34 +29,25 @@ class ProductSpec:
|
|
29 |
class PDFProcessor:
|
30 |
def __init__(self):
|
31 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
32 |
-
#
|
33 |
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf")
|
34 |
self.output_dir = Path("./output")
|
35 |
self.output_dir.mkdir(exist_ok=True)
|
36 |
|
37 |
def _initialize_emb_model(self, model_name):
|
38 |
try:
|
39 |
-
|
40 |
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
41 |
-
except:
|
42 |
-
|
43 |
from transformers import AutoTokenizer, AutoModel
|
44 |
-
|
45 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name)
|
46 |
model = AutoModel.from_pretrained("sentence-transformers/" + model_name)
|
47 |
return model
|
48 |
|
49 |
def _initialize_llm(self, model_name):
|
50 |
"""Initialize LLM with automatic download if needed"""
|
51 |
-
#
|
52 |
-
# if os.path.exists(model_path):
|
53 |
-
# return Llama(
|
54 |
-
# model_path=model_path,
|
55 |
-
# n_ctx=1024,
|
56 |
-
# n_gpu_layers=-1,
|
57 |
-
# n_threads=os.cpu_count() - 1,
|
58 |
-
# verbose=False
|
59 |
-
# )
|
60 |
return Llama.from_pretrained(
|
61 |
repo_id="TheBloke/deepseek-llm-7B-base-GGUF",
|
62 |
filename=model_name,
|
@@ -67,43 +58,63 @@ class PDFProcessor:
|
|
67 |
start_time = time.time()
|
68 |
|
69 |
# Open PDF
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
text_blocks = []
|
72 |
tables = []
|
73 |
|
74 |
-
# Extract text and tables
|
75 |
for page_num, page in enumerate(doc):
|
76 |
-
# Extract text blocks
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
# Extract tables
|
80 |
tables.extend(self._extract_tables(page, page_num))
|
81 |
|
82 |
-
# Process text blocks with LLM
|
83 |
products = []
|
84 |
-
for block in text_blocks:
|
|
|
|
|
85 |
product = self._process_text_block(block)
|
86 |
if product:
|
87 |
product.tables = tables
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
|
91 |
return {"products": products, "tables": tables}
|
92 |
|
93 |
def _extract_text_blocks(self, page) -> List[str]:
|
94 |
-
"""Extract text blocks from a PDF page"""
|
95 |
blocks = []
|
96 |
for block in page.get_text("blocks"):
|
97 |
-
|
|
|
|
|
|
|
98 |
return blocks
|
99 |
|
100 |
def _extract_tables(self, page, page_num: int) -> List[Dict]:
|
101 |
-
"""Extract tables from a PDF page"""
|
102 |
tables = []
|
103 |
try:
|
104 |
tab = page.find_tables()
|
105 |
-
if tab.tables:
|
106 |
-
for
|
107 |
table_data = table.extract()
|
108 |
if table_data:
|
109 |
tables.append({
|
@@ -113,51 +124,50 @@ class PDFProcessor:
|
|
113 |
"content": table_data
|
114 |
})
|
115 |
except Exception as e:
|
116 |
-
logger.warning(f"Error extracting tables from page {page_num}: {e}")
|
117 |
return tables
|
118 |
|
119 |
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
120 |
-
"""Process text block with LLM"""
|
121 |
prompt = self._generate_query_prompt(text)
|
122 |
-
|
123 |
try:
|
124 |
response = self.llm.create_chat_completion(
|
125 |
messages=[{"role": "user", "content": prompt}],
|
126 |
temperature=0.1,
|
127 |
max_tokens=512
|
128 |
)
|
|
|
|
|
129 |
return self._parse_response(response['choices'][0]['message']['content'])
|
130 |
except Exception as e:
|
131 |
logger.warning(f"Error processing text block: {e}")
|
132 |
return None
|
133 |
|
134 |
def _generate_query_prompt(self, text: str) -> str:
|
135 |
-
"""Generate
|
136 |
-
return f"""Extract product specifications from
|
137 |
-
{text}
|
138 |
-
|
139 |
-
Return JSON format:
|
140 |
-
{{
|
141 |
-
"name": "product name",
|
142 |
-
"description": "product description",
|
143 |
-
"price": numeric_price,
|
144 |
-
"attributes": {{ "key": "value" }}
|
145 |
-
}}"""
|
146 |
|
147 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
148 |
-
"""Parse LLM response"""
|
149 |
try:
|
150 |
json_start = response.find('{')
|
151 |
json_end = response.rfind('}') + 1
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return ProductSpec(
|
154 |
name=data.get('name', ''),
|
155 |
description=data.get('description'),
|
156 |
price=data.get('price'),
|
157 |
attributes=data.get('attributes', {})
|
158 |
)
|
159 |
-
except (json.JSONDecodeError, KeyError) as e:
|
160 |
-
logger.warning(f"Parse error: {e}")
|
161 |
return None
|
162 |
|
163 |
|
@@ -169,3 +179,10 @@ def process_pdf_catalog(pdf_path: str):
|
|
169 |
except Exception as e:
|
170 |
logger.error(f"Processing failed: {e}")
|
171 |
return {}, "Error processing PDF"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from pathlib import Path
|
6 |
from typing import List, Dict, Optional
|
7 |
from dataclasses import dataclass
|
8 |
+
from fastapi.encoders import jsonable_encoder
|
9 |
import fitz # PyMuPDF
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from llama_cpp import Llama
|
|
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
|
|
29 |
class PDFProcessor:
|
30 |
def __init__(self):
|
31 |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2")
|
32 |
+
# Choose the appropriate model filename below; adjust if needed.
|
33 |
self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf")
|
34 |
self.output_dir = Path("./output")
|
35 |
self.output_dir.mkdir(exist_ok=True)
|
36 |
|
37 |
def _initialize_emb_model(self, model_name):
|
38 |
try:
|
39 |
+
# Use SentenceTransformer if available
|
40 |
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
41 |
+
except Exception as e:
|
42 |
+
logger.warning(f"SentenceTransformer failed: {e}. Falling back to transformers model.")
|
43 |
from transformers import AutoTokenizer, AutoModel
|
|
|
44 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name)
|
45 |
model = AutoModel.from_pretrained("sentence-transformers/" + model_name)
|
46 |
return model
|
47 |
|
48 |
def _initialize_llm(self, model_name):
|
49 |
"""Initialize LLM with automatic download if needed"""
|
50 |
+
# Here we use from_pretrained so that if the model is missing locally it downloads it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return Llama.from_pretrained(
|
52 |
repo_id="TheBloke/deepseek-llm-7B-base-GGUF",
|
53 |
filename=model_name,
|
|
|
58 |
start_time = time.time()
|
59 |
|
60 |
# Open PDF
|
61 |
+
try:
|
62 |
+
doc = fitz.open(pdf_path)
|
63 |
+
except Exception as e:
|
64 |
+
logger.error(f"Failed to open PDF: {e}")
|
65 |
+
raise RuntimeError("Cannot open PDF file.") from e
|
66 |
+
|
67 |
text_blocks = []
|
68 |
tables = []
|
69 |
|
70 |
+
# Extract text and tables from each page
|
71 |
for page_num, page in enumerate(doc):
|
72 |
+
# Extract text blocks from page and filter out very short blocks (noise)
|
73 |
+
blocks = self._extract_text_blocks(page)
|
74 |
+
filtered = [block for block in blocks if len(block.strip()) >= 10]
|
75 |
+
logger.debug(f"Page {page_num + 1}: Extracted {len(blocks)} blocks, {len(filtered)} kept after filtering.")
|
76 |
+
text_blocks.extend(filtered)
|
77 |
|
78 |
+
# Extract tables (if any)
|
79 |
tables.extend(self._extract_tables(page, page_num))
|
80 |
|
81 |
+
# Process text blocks with LLM to extract product information
|
82 |
products = []
|
83 |
+
for idx, block in enumerate(text_blocks):
|
84 |
+
# Log the text block for debugging
|
85 |
+
logger.debug(f"Processing text block {idx}: {block[:100]}...")
|
86 |
product = self._process_text_block(block)
|
87 |
if product:
|
88 |
product.tables = tables
|
89 |
+
# Only add if at least one key (like name) is non-empty
|
90 |
+
if product.name or product.description or product.price or (
|
91 |
+
product.attributes and len(product.attributes) > 0):
|
92 |
+
products.append(product.to_dict())
|
93 |
+
else:
|
94 |
+
logger.debug(f"LLM returned empty product for block {idx}.")
|
95 |
+
else:
|
96 |
+
logger.debug(f"No product extracted from block {idx}.")
|
97 |
|
98 |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s")
|
99 |
return {"products": products, "tables": tables}
|
100 |
|
101 |
def _extract_text_blocks(self, page) -> List[str]:
|
102 |
+
"""Extract text blocks from a PDF page using PyMuPDF's blocks method."""
|
103 |
blocks = []
|
104 |
for block in page.get_text("blocks"):
|
105 |
+
# block[4] contains the text content
|
106 |
+
text = block[4].strip()
|
107 |
+
if text:
|
108 |
+
blocks.append(text)
|
109 |
return blocks
|
110 |
|
111 |
def _extract_tables(self, page, page_num: int) -> List[Dict]:
|
112 |
+
"""Extract tables from a PDF page using PyMuPDF's table extraction (if available)."""
|
113 |
tables = []
|
114 |
try:
|
115 |
tab = page.find_tables()
|
116 |
+
if tab and hasattr(tab, 'tables') and tab.tables:
|
117 |
+
for table in tab.tables:
|
118 |
table_data = table.extract()
|
119 |
if table_data:
|
120 |
tables.append({
|
|
|
124 |
"content": table_data
|
125 |
})
|
126 |
except Exception as e:
|
127 |
+
logger.warning(f"Error extracting tables from page {page_num + 1}: {e}")
|
128 |
return tables
|
129 |
|
130 |
def _process_text_block(self, text: str) -> Optional[ProductSpec]:
|
131 |
+
"""Process a text block with LLM to extract product specifications."""
|
132 |
prompt = self._generate_query_prompt(text)
|
133 |
+
logger.debug(f"Generated prompt: {prompt[:200]}...")
|
134 |
try:
|
135 |
response = self.llm.create_chat_completion(
|
136 |
messages=[{"role": "user", "content": prompt}],
|
137 |
temperature=0.1,
|
138 |
max_tokens=512
|
139 |
)
|
140 |
+
# Debug: log raw response
|
141 |
+
logger.debug(f"LLM raw response: {response}")
|
142 |
return self._parse_response(response['choices'][0]['message']['content'])
|
143 |
except Exception as e:
|
144 |
logger.warning(f"Error processing text block: {e}")
|
145 |
return None
|
146 |
|
147 |
def _generate_query_prompt(self, text: str) -> str:
|
148 |
+
"""Generate a prompt instructing the LLM to extract product information."""
|
149 |
+
return f"""Extract product specifications from the following text. If no product is found, return an empty JSON object with keys.\n\nText:\n{text}\n\nReturn JSON format exactly as:\n{{\n \"name\": \"product name\",\n \"description\": \"product description\",\n \"price\": numeric_price,\n \"attributes\": {{ \"key\": \"value\" }}\n}}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
def _parse_response(self, response: str) -> Optional[ProductSpec]:
|
152 |
+
"""Parse the LLM's response to extract a product specification."""
|
153 |
try:
|
154 |
json_start = response.find('{')
|
155 |
json_end = response.rfind('}') + 1
|
156 |
+
json_str = response[json_start:json_end].strip()
|
157 |
+
if not json_str:
|
158 |
+
raise ValueError("No JSON content found in response.")
|
159 |
+
data = json.loads(json_str)
|
160 |
+
# If the returned JSON is essentially empty, return None
|
161 |
+
if all(not data.get(key) for key in ['name', 'description', 'price', 'attributes']):
|
162 |
+
return None
|
163 |
return ProductSpec(
|
164 |
name=data.get('name', ''),
|
165 |
description=data.get('description'),
|
166 |
price=data.get('price'),
|
167 |
attributes=data.get('attributes', {})
|
168 |
)
|
169 |
+
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
170 |
+
logger.warning(f"Parse error: {e} in response: {response}")
|
171 |
return None
|
172 |
|
173 |
|
|
|
179 |
except Exception as e:
|
180 |
logger.error(f"Processing failed: {e}")
|
181 |
return {}, "Error processing PDF"
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
# Example usage: change this if you call process_pdf_catalog elsewhere
|
186 |
+
pdf_path = "path/to/your/pdf_file.pdf"
|
187 |
+
result, message = process_pdf_catalog(pdf_path)
|
188 |
+
print(result, message)
|