import os import json import time import logging from pathlib import Path from typing import List, Dict, Optional from dataclasses import dataclass import fitz # PyMuPDF from sentence_transformers import SentenceTransformer from llama_cpp import Llama from fastapi.encoders import jsonable_encoder logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @dataclass class ProductSpec: name: str description: Optional[str] = None price: Optional[float] = None attributes: Dict[str, str] = None tables: List[Dict] = None def to_dict(self): return jsonable_encoder(self) class PDFProcessor: def __init__(self): self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2") # self.llm = self._initialize_llm("llama-2-7b.Q2_K.gguf") self.llm = self._initialize_llm("deepseek-llm-7b-base.Q2_K.gguf") self.output_dir = Path("./output") self.output_dir.mkdir(exist_ok=True) def _initialize_emb_model(self, model_name): try: from sentence_transformers import SentenceTransformer return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') except: # Load model directly from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/" + model_name) model = AutoModel.from_pretrained("sentence-transformers/" + model_name) return model def _initialize_llm(self, model_name): """Initialize LLM with automatic download if needed""" # model_path = os.path.join("models/", model_name) # if os.path.exists(model_path): # return Llama( # model_path=model_path, # n_ctx=1024, # n_gpu_layers=-1, # n_threads=os.cpu_count() - 1, # verbose=False # ) return Llama.from_pretrained( repo_id="TheBloke/deepseek-llm-7B-base-GGUF", filename=model_name, ) def process_pdf(self, pdf_path: str) -> Dict: """Process PDF using PyMuPDF""" start_time = time.time() # Open PDF doc = fitz.open(pdf_path) text_blocks = [] tables = [] # Extract text and tables for page_num, page in enumerate(doc): # Extract text blocks text_blocks.extend(self._extract_text_blocks(page)) # Extract tables tables.extend(self._extract_tables(page, page_num)) # Process text blocks with LLM products = [] for block in text_blocks: product = self._process_text_block(block) if product: product.tables = tables products.append(product.to_dict()) logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s") return {"products": products, "tables": tables} def _extract_text_blocks(self, page) -> List[str]: """Extract text blocks from a PDF page""" blocks = [] for block in page.get_text("blocks"): blocks.append(block[4]) # The text content is at index 4 return blocks def _extract_tables(self, page, page_num: int) -> List[Dict]: """Extract tables from a PDF page""" tables = [] try: tab = page.find_tables() if tab.tables: for table_idx, table in enumerate(tab.tables): table_data = table.extract() if table_data: tables.append({ "page": page_num + 1, "cells": table_data, "header": table.header.names if table.header else [], "content": table_data }) except Exception as e: logger.warning(f"Error extracting tables from page {page_num}: {e}") return tables def _process_text_block(self, text: str) -> Optional[ProductSpec]: """Process text block with LLM""" prompt = self._generate_query_prompt(text) try: response = self.llm.create_chat_completion( messages=[{"role": "user", "content": prompt}], temperature=0.1, max_tokens=512 ) return self._parse_response(response['choices'][0]['message']['content']) except Exception as e: logger.warning(f"Error processing text block: {e}") return None def _generate_query_prompt(self, text: str) -> str: """Generate extraction prompt""" return f"""Extract product specifications from this text: {text} Return JSON format: {{ "name": "product name", "description": "product description", "price": numeric_price, "attributes": {{ "key": "value" }} }}""" def _parse_response(self, response: str) -> Optional[ProductSpec]: """Parse LLM response""" try: json_start = response.find('{') json_end = response.rfind('}') + 1 data = json.loads(response[json_start:json_end]) return ProductSpec( name=data.get('name', ''), description=data.get('description'), price=data.get('price'), attributes=data.get('attributes', {}) ) except (json.JSONDecodeError, KeyError) as e: logger.warning(f"Parse error: {e}") return None def process_pdf_catalog(pdf_path: str): processor = PDFProcessor() try: result = processor.process_pdf(pdf_path) return result, "Processing completed successfully!" except Exception as e: logger.error(f"Processing failed: {e}") return {}, "Error processing PDF"