Upload 2 files
Browse files- app.py +1864 -0
- requirements.txt +15 -0
app.py
ADDED
@@ -0,0 +1,1864 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import yfinance as yf
|
4 |
+
import streamlit as st
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
from plotly.subplots import make_subplots
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from sklearn.preprocessing import MinMaxScaler
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
import time
|
12 |
+
from scipy.stats import linregress
|
13 |
+
import requests
|
14 |
+
from scipy import signal
|
15 |
+
import ta
|
16 |
+
from ta.trend import MACD, SMAIndicator, EMAIndicator
|
17 |
+
from ta.momentum import RSIIndicator, StochasticOscillator
|
18 |
+
from ta.volatility import BollingerBands, AverageTrueRange
|
19 |
+
from ta.volume import OnBalanceVolumeIndicator, MFIIndicator
|
20 |
+
|
21 |
+
class DendriticNode:
|
22 |
+
"""
|
23 |
+
Represents a single node in the dendritic network.
|
24 |
+
Each node can have parent and child dendrites, forming a hierarchical structure.
|
25 |
+
"""
|
26 |
+
def __init__(self, level=0, feature_index=None, threshold=0.5, parent=None, name=None, growth_factor=1.0):
|
27 |
+
self.level = level # Depth in the hierarchy
|
28 |
+
self.feature_index = feature_index # Which feature this node tracks
|
29 |
+
self.threshold = threshold # Activation threshold
|
30 |
+
self.parent = parent # Parent node
|
31 |
+
self.children = [] # Child nodes
|
32 |
+
self.strength = 0.5 # Connection strength
|
33 |
+
self.activation_history = [] # Recent activation levels
|
34 |
+
self.prediction_vector = None # Pattern that often follows this node's activation
|
35 |
+
self.name = name # Optional human-readable name for this dendrite
|
36 |
+
self.growth_factor = growth_factor # How readily this dendrite grows new connections
|
37 |
+
self.learning_rate = 0.01 # Adjustable learning rate
|
38 |
+
self.prediction_confidence = 0.5 # Confidence in predictions (0-1)
|
39 |
+
self.last_activations = [] # Store last few activations for pattern recognition
|
40 |
+
self.pattern_memory = {} # Dictionary to store recognized patterns
|
41 |
+
|
42 |
+
def activate(self, input_vector, learning_rate=0.01):
|
43 |
+
"""Activate the node based on input and propagate to children"""
|
44 |
+
# Calculate activation based on feature if available
|
45 |
+
if self.feature_index is not None and self.feature_index < len(input_vector):
|
46 |
+
activation = input_vector[self.feature_index]
|
47 |
+
else:
|
48 |
+
# For higher-level nodes, activation is a weighted aggregate of children
|
49 |
+
if not self.children:
|
50 |
+
activation = 0.5 # Default activation
|
51 |
+
else:
|
52 |
+
# Prioritize stronger child dendrites for activation
|
53 |
+
child_activations = []
|
54 |
+
child_weights = []
|
55 |
+
for child in self.children:
|
56 |
+
child_act = child.activate(input_vector)
|
57 |
+
child_activations.append(child_act)
|
58 |
+
child_weights.append(child.strength)
|
59 |
+
|
60 |
+
# If all weights are zero, use uniform weighting
|
61 |
+
total_weight = sum(child_weights)
|
62 |
+
if total_weight == 0:
|
63 |
+
activation = np.mean(child_activations) if child_activations else 0.5
|
64 |
+
else:
|
65 |
+
# Calculate weighted average
|
66 |
+
activation = sum(a * w for a, w in zip(child_activations, child_weights)) / total_weight
|
67 |
+
|
68 |
+
# Update strength based on activation
|
69 |
+
if activation > self.threshold:
|
70 |
+
# Strong activation increases strength more when close to threshold
|
71 |
+
strength_boost = learning_rate * (1 + 0.5 * (1 - abs(activation - self.threshold)))
|
72 |
+
self.strength += strength_boost
|
73 |
+
else:
|
74 |
+
# Decay is slower for specialized dendrites to maintain stability
|
75 |
+
decay_rate = learning_rate * 0.1 * (1.0 if self.name is None else 0.5)
|
76 |
+
self.strength -= decay_rate
|
77 |
+
|
78 |
+
# Ensure strength remains bounded
|
79 |
+
self.strength = np.clip(self.strength, 0.1, 1.0)
|
80 |
+
|
81 |
+
# Store activation in history
|
82 |
+
self.activation_history.append(activation)
|
83 |
+
if len(self.activation_history) > 100: # Keep last 100 activations
|
84 |
+
self.activation_history.pop(0)
|
85 |
+
|
86 |
+
# Store recent activations for pattern recognition
|
87 |
+
self.last_activations.append(activation)
|
88 |
+
if len(self.last_activations) > 5: # Track last 5 activations
|
89 |
+
self.last_activations.pop(0)
|
90 |
+
|
91 |
+
# Check if we have a recognizable pattern
|
92 |
+
if len(self.last_activations) >= 3:
|
93 |
+
# Simplify the pattern to a signature (e.g., up-down-up)
|
94 |
+
pattern_sig = ''.join(['U' if self.last_activations[i] > self.last_activations[i-1]
|
95 |
+
else 'D' for i in range(1, len(self.last_activations))])
|
96 |
+
|
97 |
+
# Store this pattern's occurrence
|
98 |
+
if pattern_sig in self.pattern_memory:
|
99 |
+
self.pattern_memory[pattern_sig] += 1
|
100 |
+
else:
|
101 |
+
self.pattern_memory[pattern_sig] = 1
|
102 |
+
|
103 |
+
return activation * self.strength
|
104 |
+
|
105 |
+
def update_prediction(self, future_vector, learning_rate=0.01):
|
106 |
+
"""Update prediction vector based on what follows this node's activation"""
|
107 |
+
if not self.activation_history:
|
108 |
+
return # No activations yet
|
109 |
+
|
110 |
+
# Only update prediction if recent activation was significant
|
111 |
+
recent_activation = self.activation_history[-1] if self.activation_history else 0
|
112 |
+
if recent_activation * self.strength < 0.3:
|
113 |
+
return # Not active enough to learn from
|
114 |
+
|
115 |
+
if self.prediction_vector is None:
|
116 |
+
self.prediction_vector = future_vector.copy()
|
117 |
+
self.prediction_confidence = 0.5 # Initial confidence
|
118 |
+
else:
|
119 |
+
# Adjust learning rate based on activation strength
|
120 |
+
effective_rate = learning_rate * min(1.0, recent_activation * 2)
|
121 |
+
|
122 |
+
# Calculate prediction error
|
123 |
+
if hasattr(future_vector, '__len__') and hasattr(self.prediction_vector, '__len__'):
|
124 |
+
error = np.sqrt(np.mean((np.array(future_vector) - np.array(self.prediction_vector))**2))
|
125 |
+
|
126 |
+
# Adjust confidence based on error (lower error = higher confidence)
|
127 |
+
confidence_change = 0.1 * (1.0 - min(error * 2, 1.0))
|
128 |
+
self.prediction_confidence = np.clip(
|
129 |
+
self.prediction_confidence + confidence_change, 0.1, 0.9)
|
130 |
+
|
131 |
+
# Update prediction with weighted blend
|
132 |
+
self.prediction_vector = (1 - effective_rate) * self.prediction_vector + effective_rate * future_vector
|
133 |
+
|
134 |
+
def predict(self):
|
135 |
+
"""Generate prediction based on current activation pattern"""
|
136 |
+
if self.prediction_vector is None:
|
137 |
+
return None
|
138 |
+
|
139 |
+
# Scale by strength and confidence
|
140 |
+
prediction = self.prediction_vector * self.strength * self.prediction_confidence
|
141 |
+
|
142 |
+
# If we have recognized patterns, boost prediction based on pattern history
|
143 |
+
if self.last_activations and len(self.last_activations) >= 3:
|
144 |
+
pattern_sig = ''.join(['U' if self.last_activations[i] > self.last_activations[i-1]
|
145 |
+
else 'D' for i in range(1, len(self.last_activations))])
|
146 |
+
|
147 |
+
if pattern_sig in self.pattern_memory:
|
148 |
+
# Boost based on how often we've seen this pattern (normalized)
|
149 |
+
pattern_count = self.pattern_memory[pattern_sig]
|
150 |
+
total_patterns = sum(self.pattern_memory.values())
|
151 |
+
pattern_confidence = min(0.2, pattern_count / (total_patterns + 1))
|
152 |
+
|
153 |
+
# If last part of pattern is "U", boost upward prediction
|
154 |
+
if pattern_sig.endswith('U'):
|
155 |
+
for i in range(len(prediction)):
|
156 |
+
prediction[i] = min(1.0, prediction[i] + pattern_confidence)
|
157 |
+
# If last part of pattern is "D", boost downward prediction
|
158 |
+
elif pattern_sig.endswith('D'):
|
159 |
+
for i in range(len(prediction)):
|
160 |
+
prediction[i] = max(0.0, prediction[i] - pattern_confidence)
|
161 |
+
|
162 |
+
return prediction
|
163 |
+
|
164 |
+
def grow_dendrite(self, feature_index=None, threshold=None, name=None, growth_factor=None):
|
165 |
+
"""Grow a new child dendrite"""
|
166 |
+
if threshold is None:
|
167 |
+
threshold = self.threshold + np.random.uniform(-0.1, 0.1) # Slightly different threshold
|
168 |
+
|
169 |
+
if growth_factor is None:
|
170 |
+
growth_factor = self.growth_factor
|
171 |
+
|
172 |
+
# Create new child with reference to parent
|
173 |
+
child = DendriticNode(
|
174 |
+
level=self.level + 1,
|
175 |
+
feature_index=feature_index,
|
176 |
+
threshold=threshold,
|
177 |
+
parent=self,
|
178 |
+
name=name,
|
179 |
+
growth_factor=growth_factor
|
180 |
+
)
|
181 |
+
self.children.append(child)
|
182 |
+
return child
|
183 |
+
|
184 |
+
def prune_weak_dendrites(self, min_strength=0.2):
|
185 |
+
"""Remove weak dendrites that haven't been useful"""
|
186 |
+
# Don't prune named dendrites (preserve specialized ones)
|
187 |
+
self.children = [child for child in self.children
|
188 |
+
if child.strength > min_strength or child.name is not None]
|
189 |
+
|
190 |
+
# Recursively prune children
|
191 |
+
for child in self.children:
|
192 |
+
child.prune_weak_dendrites(min_strength)
|
193 |
+
|
194 |
+
class HierarchicalDendriticNetwork:
|
195 |
+
"""
|
196 |
+
Implements a hierarchical network of dendrites for stock prediction.
|
197 |
+
The network self-organizes based on patterns in the input data.
|
198 |
+
"""
|
199 |
+
def __init__(self, input_dim, max_levels=3, initial_dendrites_per_level=5):
|
200 |
+
self.input_dim = input_dim # Number of input features
|
201 |
+
self.max_levels = max_levels # Maximum depth of hierarchy
|
202 |
+
|
203 |
+
# Root node (soma)
|
204 |
+
self.root = DendriticNode(level=0, name="root")
|
205 |
+
|
206 |
+
# Initialize basic structure
|
207 |
+
self._initialize_dendrites(initial_dendrites_per_level)
|
208 |
+
|
209 |
+
# Scaling for inputs
|
210 |
+
self.scaler = MinMaxScaler(feature_range=(0, 1))
|
211 |
+
|
212 |
+
# Memory for temporal patterns
|
213 |
+
self.memory_window = 15 # Days to remember (increased from 10)
|
214 |
+
self.memory_buffer = [] # Store recent data
|
215 |
+
|
216 |
+
# Fractal dimension estimate
|
217 |
+
self.fractal_dim = 1.0
|
218 |
+
|
219 |
+
# Performance tracking
|
220 |
+
self.prediction_accuracy = []
|
221 |
+
self.predicted_directions = []
|
222 |
+
self.actual_directions = []
|
223 |
+
|
224 |
+
# Feature importance tracking
|
225 |
+
self.feature_importance = np.ones(input_dim) / input_dim
|
226 |
+
|
227 |
+
# Market regime detection
|
228 |
+
self.current_regime = "unknown" # "bullish", "bearish", "sideways", "volatile"
|
229 |
+
self.regime_history = []
|
230 |
+
|
231 |
+
# Adaptive threshold based on market volatility
|
232 |
+
self.confidence_threshold = 0.55 # Starting threshold
|
233 |
+
self.volatility_history = []
|
234 |
+
|
235 |
+
# Cross-asset correlations (will be populated during training)
|
236 |
+
self.asset_correlations = {}
|
237 |
+
|
238 |
+
def _initialize_dendrites(self, dendrites_per_level):
|
239 |
+
"""Create initial dendrite structure with specialized dendrites for stock patterns"""
|
240 |
+
# Price level dendrites
|
241 |
+
self.root.grow_dendrite(feature_index=0, threshold=0.3, name="price_low", growth_factor=1.2)
|
242 |
+
self.root.grow_dendrite(feature_index=0, threshold=0.5, name="price_mid", growth_factor=1.0)
|
243 |
+
self.root.grow_dendrite(feature_index=0, threshold=0.7, name="price_high", growth_factor=1.2)
|
244 |
+
|
245 |
+
# Price trend dendrites
|
246 |
+
self.root.grow_dendrite(feature_index=1, threshold=0.3, name="downtrend", growth_factor=1.2)
|
247 |
+
self.root.grow_dendrite(feature_index=1, threshold=0.5, name="neutral_trend", growth_factor=0.8)
|
248 |
+
self.root.grow_dendrite(feature_index=1, threshold=0.7, name="uptrend", growth_factor=1.2)
|
249 |
+
|
250 |
+
# Volatility dendrites
|
251 |
+
self.root.grow_dendrite(feature_index=2, threshold=0.3, name="low_volatility", growth_factor=0.8)
|
252 |
+
self.root.grow_dendrite(feature_index=2, threshold=0.7, name="high_volatility", growth_factor=1.2)
|
253 |
+
|
254 |
+
# Volume dendrites
|
255 |
+
self.root.grow_dendrite(feature_index=3, threshold=0.3, name="low_volume", growth_factor=0.7)
|
256 |
+
self.root.grow_dendrite(feature_index=3, threshold=0.7, name="high_volume", growth_factor=1.3)
|
257 |
+
|
258 |
+
# Momentum dendrites
|
259 |
+
self.root.grow_dendrite(feature_index=4, threshold=0.3, name="negative_momentum", growth_factor=1.2)
|
260 |
+
self.root.grow_dendrite(feature_index=4, threshold=0.7, name="positive_momentum", growth_factor=1.2)
|
261 |
+
|
262 |
+
# RSI dendrites
|
263 |
+
self.root.grow_dendrite(feature_index=7, threshold=0.3, name="oversold", growth_factor=1.3)
|
264 |
+
self.root.grow_dendrite(feature_index=7, threshold=0.7, name="overbought", growth_factor=1.3)
|
265 |
+
|
266 |
+
# MACD dendrites
|
267 |
+
self.root.grow_dendrite(feature_index=5, threshold=0.3, name="bearish_macd", growth_factor=1.1)
|
268 |
+
self.root.grow_dendrite(feature_index=5, threshold=0.7, name="bullish_macd", growth_factor=1.1)
|
269 |
+
|
270 |
+
# Bollinger Band dendrites
|
271 |
+
self.root.grow_dendrite(feature_index=6, threshold=0.2, name="below_lower_band", growth_factor=1.3)
|
272 |
+
self.root.grow_dendrite(feature_index=6, threshold=0.8, name="above_upper_band", growth_factor=1.3)
|
273 |
+
|
274 |
+
# Currency-related dendrites
|
275 |
+
if self.input_dim > 15: # If we have currency features
|
276 |
+
self.root.grow_dendrite(feature_index=15, threshold=0.3, name="dollar_weak", growth_factor=1.1)
|
277 |
+
self.root.grow_dendrite(feature_index=15, threshold=0.7, name="dollar_strong", growth_factor=1.1)
|
278 |
+
|
279 |
+
# Level 2: Create pattern detector dendrites
|
280 |
+
# Create dendrites that specifically look for common patterns
|
281 |
+
|
282 |
+
# Find dendrites by name
|
283 |
+
uptrend = None
|
284 |
+
downtrend = None
|
285 |
+
high_volume = None
|
286 |
+
low_volatility = None
|
287 |
+
oversold = None
|
288 |
+
overbought = None
|
289 |
+
|
290 |
+
for child in self.root.children:
|
291 |
+
if child.name == "uptrend":
|
292 |
+
uptrend = child
|
293 |
+
elif child.name == "downtrend":
|
294 |
+
downtrend = child
|
295 |
+
elif child.name == "high_volume":
|
296 |
+
high_volume = child
|
297 |
+
elif child.name == "low_volatility":
|
298 |
+
low_volatility = child
|
299 |
+
elif child.name == "oversold":
|
300 |
+
oversold = child
|
301 |
+
elif child.name == "overbought":
|
302 |
+
overbought = child
|
303 |
+
|
304 |
+
# Pattern 1: Uptrend with increasing volume (bullish)
|
305 |
+
if uptrend and high_volume:
|
306 |
+
pattern1 = uptrend.grow_dendrite(threshold=0.6, name="uptrend_with_volume", growth_factor=1.5)
|
307 |
+
for _ in range(2):
|
308 |
+
pattern1.grow_dendrite(threshold=0.6)
|
309 |
+
|
310 |
+
# Pattern 2: Downtrend with high volatility (bearish)
|
311 |
+
if downtrend:
|
312 |
+
pattern2 = downtrend.grow_dendrite(threshold=0.4, name="downtrend_continuation", growth_factor=1.5)
|
313 |
+
for _ in range(2):
|
314 |
+
pattern2.grow_dendrite(threshold=0.4)
|
315 |
+
|
316 |
+
# Pattern 3: Low volatility with positive momentum (potential breakout)
|
317 |
+
if low_volatility:
|
318 |
+
pattern3 = low_volatility.grow_dendrite(threshold=0.6, name="volatility_compression", growth_factor=1.5)
|
319 |
+
for _ in range(2):
|
320 |
+
pattern3.grow_dendrite(threshold=0.6)
|
321 |
+
|
322 |
+
# Pattern 4: Oversold with volume spike (potential reversal)
|
323 |
+
if oversold and high_volume:
|
324 |
+
pattern4 = oversold.grow_dendrite(threshold=0.7, name="oversold_reversal", growth_factor=1.5)
|
325 |
+
for _ in range(2):
|
326 |
+
pattern4.grow_dendrite(threshold=0.7)
|
327 |
+
|
328 |
+
# Pattern 5: Overbought with volume decline (potential top)
|
329 |
+
if overbought:
|
330 |
+
pattern5 = overbought.grow_dendrite(threshold=0.3, name="overbought_reversal", growth_factor=1.5)
|
331 |
+
for _ in range(2):
|
332 |
+
pattern5.grow_dendrite(threshold=0.3)
|
333 |
+
|
334 |
+
# Add some general dendrites for other patterns
|
335 |
+
for dendrite in self.root.children:
|
336 |
+
for _ in range(dendrites_per_level // 5):
|
337 |
+
dendrite.grow_dendrite()
|
338 |
+
|
339 |
+
# Level 3: Higher-level pattern integration
|
340 |
+
if self.max_levels >= 3:
|
341 |
+
# Create specialized market regime dendrites
|
342 |
+
bullish_regime = self.root.grow_dendrite(name="bullish_regime", threshold=0.7, growth_factor=1.2)
|
343 |
+
bearish_regime = self.root.grow_dendrite(name="bearish_regime", threshold=0.3, growth_factor=1.2)
|
344 |
+
sideways_regime = self.root.grow_dendrite(name="sideways_regime", threshold=0.5, growth_factor=1.0)
|
345 |
+
|
346 |
+
# Add children to these regime detectors
|
347 |
+
for _ in range(dendrites_per_level // 3):
|
348 |
+
bullish_regime.grow_dendrite(threshold=np.random.uniform(0.6, 0.8))
|
349 |
+
bearish_regime.grow_dendrite(threshold=np.random.uniform(0.2, 0.4))
|
350 |
+
sideways_regime.grow_dendrite(threshold=np.random.uniform(0.4, 0.6))
|
351 |
+
|
352 |
+
def preprocess_data(self, data):
|
353 |
+
"""Preprocess stock data for the dendritic network"""
|
354 |
+
# Extract relevant features
|
355 |
+
features = self._extract_features(data)
|
356 |
+
|
357 |
+
# Scale features to [0, 1]
|
358 |
+
if features.shape[0] > 0: # Check if we have any data
|
359 |
+
scaled_features = self.scaler.fit_transform(features)
|
360 |
+
return scaled_features
|
361 |
+
return np.array([])
|
362 |
+
|
363 |
+
def _extract_features(self, data):
|
364 |
+
"""Extract features from stock data with enhanced technical indicators"""
|
365 |
+
if data.empty:
|
366 |
+
return np.array([])
|
367 |
+
|
368 |
+
# Create a copy of the dataframe to avoid modifying the original
|
369 |
+
df = data.copy()
|
370 |
+
|
371 |
+
# Basic features
|
372 |
+
features = []
|
373 |
+
|
374 |
+
# 1. Price features - normalized closing price
|
375 |
+
close = df['Close'].values
|
376 |
+
price = (close - np.mean(close)) / (np.std(close) + 1e-8)
|
377 |
+
features.append(price)
|
378 |
+
|
379 |
+
# 2. Returns (daily percent change)
|
380 |
+
returns = df['Close'].pct_change().fillna(0).values
|
381 |
+
features.append(returns)
|
382 |
+
|
383 |
+
# 3. Volatility (rolling std of returns)
|
384 |
+
volatility = df['Close'].pct_change().rolling(window=5).std().fillna(0).values
|
385 |
+
features.append(volatility)
|
386 |
+
|
387 |
+
# 4. Volume relative to average
|
388 |
+
rel_volume = df['Volume'] / df['Volume'].rolling(window=20).mean().fillna(1)
|
389 |
+
rel_volume = rel_volume.fillna(1).values
|
390 |
+
features.append(rel_volume)
|
391 |
+
|
392 |
+
# 5. Price momentum (rate of change over 5 days)
|
393 |
+
momentum = df['Close'].pct_change(periods=5).fillna(0).values
|
394 |
+
features.append(momentum)
|
395 |
+
|
396 |
+
# 6. MACD Line
|
397 |
+
macd = MACD(close=df['Close']).macd()
|
398 |
+
macd = (macd - np.mean(macd)) / (np.std(macd) + 1e-8)
|
399 |
+
features.append(macd.fillna(0).values)
|
400 |
+
|
401 |
+
# 7. Bollinger Bands Position
|
402 |
+
bb = BollingerBands(close=df['Close'], window=20, window_dev=2)
|
403 |
+
bb_pos = (df['Close'] - bb.bollinger_lband()) / (bb.bollinger_hband() - bb.bollinger_lband() + 1e-8)
|
404 |
+
features.append(bb_pos.fillna(0.5).values)
|
405 |
+
|
406 |
+
# 8. RSI
|
407 |
+
rsi = RSIIndicator(close=df['Close'], window=14).rsi() / 100.0
|
408 |
+
features.append(rsi.fillna(0.5).values)
|
409 |
+
|
410 |
+
# 9. Stochastic Oscillator
|
411 |
+
stoch = StochasticOscillator(high=df['High'], low=df['Low'], close=df['Close']).stoch() / 100.0
|
412 |
+
features.append(stoch.fillna(0.5).values)
|
413 |
+
|
414 |
+
# 10. Average True Range (normalized)
|
415 |
+
atr = AverageTrueRange(high=df['High'], low=df['Low'], close=df['Close']).average_true_range()
|
416 |
+
atr = (atr - np.min(atr)) / (np.max(atr) - np.min(atr) + 1e-8)
|
417 |
+
features.append(atr.fillna(0.2).values)
|
418 |
+
|
419 |
+
# 11. On Balance Volume (normalized)
|
420 |
+
obv = OnBalanceVolumeIndicator(close=df['Close'], volume=df['Volume']).on_balance_volume()
|
421 |
+
obv = (obv - np.mean(obv)) / (np.std(obv) + 1e-8)
|
422 |
+
features.append(obv.fillna(0).values)
|
423 |
+
|
424 |
+
# 12. Money Flow Index
|
425 |
+
mfi = MFIIndicator(high=df['High'], low=df['Low'], close=df['Close'],
|
426 |
+
volume=df['Volume'], window=14).money_flow_index() / 100.0
|
427 |
+
features.append(mfi.fillna(0.5).values)
|
428 |
+
|
429 |
+
# 13. Price Distance from 50-day SMA (normalized)
|
430 |
+
sma50 = SMAIndicator(close=df['Close'], window=50).sma_indicator()
|
431 |
+
sma_dist = (df['Close'] - sma50) / (df['Close'] + 1e-8)
|
432 |
+
features.append(sma_dist.fillna(0).values)
|
433 |
+
|
434 |
+
# 14. EMA Crossover Signal (fast vs slow EMAs)
|
435 |
+
ema12 = EMAIndicator(close=df['Close'], window=12).ema_indicator()
|
436 |
+
ema26 = EMAIndicator(close=df['Close'], window=26).ema_indicator()
|
437 |
+
ema_cross = (ema12 - ema26) / (df['Close'] + 1e-8)
|
438 |
+
features.append(ema_cross.fillna(0).values)
|
439 |
+
|
440 |
+
# 15. Fibonacci Retracement Levels (dynamic)
|
441 |
+
# Find recent high and low in a rolling window
|
442 |
+
window = 20
|
443 |
+
df['RollingHigh'] = df['High'].rolling(window=window).max()
|
444 |
+
df['RollingLow'] = df['Low'].rolling(window=window).min()
|
445 |
+
|
446 |
+
# Calculate where current price is in the retracement levels
|
447 |
+
range_size = df['RollingHigh'] - df['RollingLow']
|
448 |
+
fib_pos = (df['Close'] - df['RollingLow']) / (range_size + 1e-8)
|
449 |
+
features.append(fib_pos.fillna(0.5).values)
|
450 |
+
|
451 |
+
# Include any currency-related features if present
|
452 |
+
for col in df.columns:
|
453 |
+
if col.startswith('Currency_'):
|
454 |
+
# Normalize currency data
|
455 |
+
curr_data = df[col].values
|
456 |
+
if len(curr_data) > 0:
|
457 |
+
curr_norm = (curr_data - np.mean(curr_data)) / (np.std(curr_data) + 1e-8)
|
458 |
+
features.append(curr_norm)
|
459 |
+
|
460 |
+
# Transpose to get features as columns
|
461 |
+
return np.transpose(np.array(features))
|
462 |
+
|
463 |
+
def add_currency_data(self, data, currency_data):
|
464 |
+
"""Add currency exchange rate data to feature set"""
|
465 |
+
if data.empty or currency_data.empty:
|
466 |
+
return data
|
467 |
+
|
468 |
+
# Resample currency data to match stock data frequency
|
469 |
+
currency_data = currency_data.reindex(data.index, method='ffill')
|
470 |
+
|
471 |
+
# Add currency columns to stock data
|
472 |
+
for col in currency_data.columns:
|
473 |
+
data[f'Currency_{col}'] = currency_data[col]
|
474 |
+
|
475 |
+
return data
|
476 |
+
|
477 |
+
def add_sector_data(self, data, sector_ticker, period="1y"):
|
478 |
+
"""Add sector ETF data for correlation analysis"""
|
479 |
+
try:
|
480 |
+
# Fetch sector data
|
481 |
+
sector_data = yf.Ticker(sector_ticker).history(period=period)
|
482 |
+
if sector_data.empty:
|
483 |
+
return data
|
484 |
+
|
485 |
+
# Align with stock data dates
|
486 |
+
sector_data = sector_data.reindex(data.index, method='ffill')
|
487 |
+
|
488 |
+
# Calculate daily returns
|
489 |
+
sector_returns = sector_data['Close'].pct_change().fillna(0)
|
490 |
+
|
491 |
+
# Add to stock data
|
492 |
+
data[f'Sector_{sector_ticker}'] = sector_returns
|
493 |
+
|
494 |
+
return data
|
495 |
+
except Exception as e:
|
496 |
+
st.error(f"Error fetching sector data: {e}")
|
497 |
+
return data
|
498 |
+
|
499 |
+
def detect_market_regime(self, data, lookback=20):
|
500 |
+
"""Detect current market regime based on price action and volatility"""
|
501 |
+
if len(data) < lookback:
|
502 |
+
return "unknown"
|
503 |
+
|
504 |
+
# Get recent data
|
505 |
+
recent = data.iloc[-lookback:]
|
506 |
+
|
507 |
+
# Calculate trend strength
|
508 |
+
returns = recent['Close'].pct_change().dropna()
|
509 |
+
trend = np.sum(returns) / (np.std(returns) + 1e-8)
|
510 |
+
|
511 |
+
# Calculate volatility
|
512 |
+
volatility = np.std(returns) * np.sqrt(252) # Annualized
|
513 |
+
|
514 |
+
# Store volatility for adaptive thresholds
|
515 |
+
self.volatility_history.append(volatility)
|
516 |
+
if len(self.volatility_history) > 10:
|
517 |
+
self.volatility_history.pop(0)
|
518 |
+
|
519 |
+
# Update confidence threshold based on recent volatility
|
520 |
+
if len(self.volatility_history) > 1:
|
521 |
+
avg_vol = np.mean(self.volatility_history)
|
522 |
+
# Higher volatility = higher threshold (require more confidence)
|
523 |
+
self.confidence_threshold = 0.5 + min(0.2, avg_vol)
|
524 |
+
|
525 |
+
# Determine regime
|
526 |
+
if abs(trend) < 0.5: # Low trend strength
|
527 |
+
if volatility > 0.2: # But high volatility
|
528 |
+
regime = "volatile"
|
529 |
+
else:
|
530 |
+
regime = "sideways"
|
531 |
+
elif trend > 0.5: # Strong uptrend
|
532 |
+
regime = "bullish"
|
533 |
+
else: # Strong downtrend
|
534 |
+
regime = "bearish"
|
535 |
+
|
536 |
+
self.current_regime = regime
|
537 |
+
self.regime_history.append(regime)
|
538 |
+
|
539 |
+
return regime
|
540 |
+
|
541 |
+
def estimate_fractal_dimension(self):
|
542 |
+
"""
|
543 |
+
Estimate the fractal dimension of the dendrite activation patterns
|
544 |
+
using a box counting method simulation
|
545 |
+
"""
|
546 |
+
# Create a simulated activation grid from dendrite strengths
|
547 |
+
grid_size = 32
|
548 |
+
activation_grid = np.zeros((grid_size, grid_size))
|
549 |
+
|
550 |
+
def add_node_to_grid(node, x=0, y=0, spread=grid_size/2):
|
551 |
+
# Add fuzzy activation for more complex boundaries
|
552 |
+
strength = node.strength
|
553 |
+
x_int, y_int = int(x), int(y)
|
554 |
+
|
555 |
+
# Create a small activation cloud around the dendrite
|
556 |
+
for dx in range(-1, 2):
|
557 |
+
for dy in range(-1, 2):
|
558 |
+
nx, ny = (x_int + dx) % grid_size, (y_int + dy) % grid_size
|
559 |
+
# Stronger activation at center, weaker at edges
|
560 |
+
dist = np.sqrt(dx**2 + dy**2)
|
561 |
+
activation_grid[nx, ny] = max(
|
562 |
+
activation_grid[nx, ny],
|
563 |
+
strength * max(0, 1 - dist/2)
|
564 |
+
)
|
565 |
+
|
566 |
+
# Add children in a circular pattern with some randomization
|
567 |
+
if node.children:
|
568 |
+
angle_step = 2 * np.pi / len(node.children)
|
569 |
+
for i, child in enumerate(node.children):
|
570 |
+
angle = i * angle_step + np.random.uniform(-0.2, 0.2)
|
571 |
+
new_spread = max(1, spread * (0.6 + 0.1 * np.random.random()))
|
572 |
+
new_x = x + np.cos(angle) * new_spread
|
573 |
+
new_y = y + np.sin(angle) * new_spread
|
574 |
+
add_node_to_grid(child, new_x, new_y, new_spread)
|
575 |
+
|
576 |
+
# Start from center of grid
|
577 |
+
add_node_to_grid(self.root, grid_size//2, grid_size//2)
|
578 |
+
|
579 |
+
# Apply Gaussian blur to create more natural boundaries
|
580 |
+
from scipy.ndimage import gaussian_filter
|
581 |
+
activation_grid = gaussian_filter(activation_grid, sigma=0.5)
|
582 |
+
|
583 |
+
# Create more defined boundaries using edge detection
|
584 |
+
edges = np.zeros_like(activation_grid)
|
585 |
+
threshold = 0.2
|
586 |
+
for i in range(1, grid_size-1):
|
587 |
+
for j in range(1, grid_size-1):
|
588 |
+
if activation_grid[i, j] > threshold:
|
589 |
+
# Check if there's a significant gradient in any direction
|
590 |
+
neighbors = [
|
591 |
+
activation_grid[i-1, j], activation_grid[i+1, j],
|
592 |
+
activation_grid[i, j-1], activation_grid[i, j+1]
|
593 |
+
]
|
594 |
+
if max(neighbors) - min(neighbors) > 0.15:
|
595 |
+
edges[i, j] = 0.5 # Mark as boundary
|
596 |
+
|
597 |
+
# Combine the activation with boundary emphasis
|
598 |
+
combined_grid = activation_grid.copy()
|
599 |
+
combined_grid[edges > 0] += 0.3 # Enhance boundaries
|
600 |
+
combined_grid = np.clip(combined_grid, 0, 1)
|
601 |
+
|
602 |
+
# Apply box counting method to estimate fractal dimension
|
603 |
+
box_sizes = [1, 2, 4, 8, 16]
|
604 |
+
counts = []
|
605 |
+
|
606 |
+
for size in box_sizes:
|
607 |
+
count = 0
|
608 |
+
# Count boxes of size 'size' needed to cover the pattern
|
609 |
+
for i in range(0, grid_size, size):
|
610 |
+
for j in range(0, grid_size, size):
|
611 |
+
if np.any(combined_grid[i:i+size, j:j+size] > 0.25):
|
612 |
+
count += 1
|
613 |
+
counts.append(count)
|
614 |
+
|
615 |
+
# Calculate dimension from log-log plot slope
|
616 |
+
if all(c > 0 for c in counts):
|
617 |
+
coeffs = np.polyfit(np.log(box_sizes), np.log(counts), 1)
|
618 |
+
self.fractal_dim = -coeffs[0] # Negative slope gives dimension
|
619 |
+
|
620 |
+
return self.fractal_dim, combined_grid
|
621 |
+
|
622 |
+
def find_pattern_correlations(self, input_data_buffer):
|
623 |
+
"""Find patterns of feature correlations in the input data"""
|
624 |
+
if not input_data_buffer or len(input_data_buffer) < 5:
|
625 |
+
return {}
|
626 |
+
|
627 |
+
# Stack data from buffer
|
628 |
+
data_matrix = np.vstack(input_data_buffer)
|
629 |
+
|
630 |
+
# Calculate correlation matrix
|
631 |
+
corr_matrix = np.corrcoef(data_matrix.T)
|
632 |
+
|
633 |
+
# Find strongest feature pairs
|
634 |
+
pairs = []
|
635 |
+
n_features = corr_matrix.shape[0]
|
636 |
+
for i in range(n_features):
|
637 |
+
for j in range(i+1, n_features):
|
638 |
+
pairs.append((i, j, abs(corr_matrix[i, j])))
|
639 |
+
|
640 |
+
# Sort by correlation strength
|
641 |
+
pairs.sort(key=lambda x: x[2], reverse=True)
|
642 |
+
|
643 |
+
# Return top correlations
|
644 |
+
top_pairs = {}
|
645 |
+
for i, j, strength in pairs[:5]: # Top 5 correlations
|
646 |
+
if strength > 0.4: # Only meaningful correlations
|
647 |
+
key = f"feature_{i}_feature_{j}"
|
648 |
+
top_pairs[key] = strength
|
649 |
+
|
650 |
+
return top_pairs
|
651 |
+
|
652 |
+
def train(self, data, epochs=1, learning_rate=0.01, growth_frequency=10):
|
653 |
+
"""
|
654 |
+
Train the dendritic network on stock data.
|
655 |
+
The network adapts its structure based on patterns in the data.
|
656 |
+
"""
|
657 |
+
if data.empty:
|
658 |
+
return
|
659 |
+
|
660 |
+
# First determine market regime
|
661 |
+
self.detect_market_regime(data)
|
662 |
+
|
663 |
+
# Preprocess data
|
664 |
+
scaled_data = self.preprocess_data(data)
|
665 |
+
|
666 |
+
if len(scaled_data) == 0:
|
667 |
+
return
|
668 |
+
|
669 |
+
# Initialize memory buffer
|
670 |
+
self.memory_buffer = []
|
671 |
+
|
672 |
+
# Train for specified number of epochs
|
673 |
+
for epoch in range(epochs):
|
674 |
+
# Track predictions for evaluation
|
675 |
+
predicted_values = []
|
676 |
+
actual_values = []
|
677 |
+
|
678 |
+
# Process each time step
|
679 |
+
for i in range(len(scaled_data) - 1):
|
680 |
+
current_vector = scaled_data[i]
|
681 |
+
future_vector = scaled_data[i + 1]
|
682 |
+
|
683 |
+
# Add to memory buffer
|
684 |
+
self.memory_buffer.append(current_vector)
|
685 |
+
if len(self.memory_buffer) > self.memory_window:
|
686 |
+
self.memory_buffer.pop(0)
|
687 |
+
|
688 |
+
# Find pattern correlations periodically
|
689 |
+
if i % 20 == 0 and len(self.memory_buffer) > 5:
|
690 |
+
self.find_pattern_correlations(self.memory_buffer)
|
691 |
+
|
692 |
+
# Activate dendrites
|
693 |
+
root_activation = self.root.activate(current_vector, learning_rate)
|
694 |
+
|
695 |
+
# Make a prediction before seeing the next value
|
696 |
+
if i > self.memory_window:
|
697 |
+
prediction = self.predict_next()
|
698 |
+
if prediction is not None and len(prediction) > 0:
|
699 |
+
# For now, just use first feature (price) for evaluation
|
700 |
+
predicted_values.append(prediction[0])
|
701 |
+
actual_values.append(future_vector[0])
|
702 |
+
|
703 |
+
# Update dendrite predictions
|
704 |
+
self._update_predictions(future_vector, learning_rate)
|
705 |
+
|
706 |
+
# Periodically grow new dendrites or prune weak ones
|
707 |
+
if i % growth_frequency == 0:
|
708 |
+
self._adapt_structure(current_vector, learning_rate)
|
709 |
+
|
710 |
+
# Calculate prediction accuracy for this epoch
|
711 |
+
if predicted_values and actual_values:
|
712 |
+
# Calculate directional accuracy (up/down)
|
713 |
+
pred_dir = []
|
714 |
+
actual_dir = []
|
715 |
+
|
716 |
+
for i in range(1, len(predicted_values)):
|
717 |
+
# Predicted direction: is next predicted value higher than current actual?
|
718 |
+
pred_dir.append(1 if predicted_values[i] > actual_values[i-1] else 0)
|
719 |
+
# Actual direction: is next actual value higher than current actual?
|
720 |
+
actual_dir.append(1 if actual_values[i] > actual_values[i-1] else 0)
|
721 |
+
|
722 |
+
if pred_dir and actual_dir:
|
723 |
+
accuracy = sum(p == a for p, a in zip(pred_dir, actual_dir)) / len(pred_dir)
|
724 |
+
self.prediction_accuracy.append(accuracy)
|
725 |
+
|
726 |
+
# Store for analysis
|
727 |
+
self.predicted_directions.extend(pred_dir)
|
728 |
+
self.actual_directions.extend(actual_dir)
|
729 |
+
|
730 |
+
if epoch == epochs - 1: # Only on last epoch
|
731 |
+
st.write(f"Epoch {epoch+1}: Directional Accuracy = {accuracy:.4f}")
|
732 |
+
|
733 |
+
# Calculate fractal dimension after training
|
734 |
+
self.estimate_fractal_dimension()
|
735 |
+
|
736 |
+
def _update_predictions(self, future_vector, learning_rate):
|
737 |
+
"""Update prediction vectors throughout the network"""
|
738 |
+
# Only update if we have enough memory
|
739 |
+
if len(self.memory_buffer) < 2:
|
740 |
+
return
|
741 |
+
|
742 |
+
# Get last and current vectors
|
743 |
+
current_vector = self.memory_buffer[-1]
|
744 |
+
|
745 |
+
def update_node_predictions(node, level_learning_rate):
|
746 |
+
# Update this node's prediction
|
747 |
+
node.update_prediction(future_vector, level_learning_rate)
|
748 |
+
|
749 |
+
# Recursively update child nodes with diminishing learning rate
|
750 |
+
child_lr = level_learning_rate * 0.9 # Reduce learning rate for children
|
751 |
+
for child in node.children:
|
752 |
+
update_node_predictions(child, child_lr)
|
753 |
+
|
754 |
+
# Start from root with base learning rate
|
755 |
+
update_node_predictions(self.root, learning_rate)
|
756 |
+
|
757 |
+
def _adapt_structure(self, current_vector, learning_rate):
|
758 |
+
"""Adapt the dendritic structure by growing or pruning dendrites"""
|
759 |
+
# Grow new dendrites where useful
|
760 |
+
def adapt_node(node):
|
761 |
+
# Probabilistic growth based on activation, strength, and level
|
762 |
+
growth_prob = node.strength * node.growth_factor * (1.0 / (node.level + 1))
|
763 |
+
if np.random.random() < growth_prob and node.level < self.max_levels - 1:
|
764 |
+
# Determine feature for new dendrite
|
765 |
+
if node.level == 0:
|
766 |
+
# First level dendrites track specific features
|
767 |
+
# Prioritize features based on their importance
|
768 |
+
feature_weights = self.feature_importance + 0.1 # Avoid zero probability
|
769 |
+
feature_idx = np.random.choice(
|
770 |
+
range(self.input_dim),
|
771 |
+
p=feature_weights/np.sum(feature_weights)
|
772 |
+
)
|
773 |
+
|
774 |
+
# Create dendrite with threshold biased toward discriminating values
|
775 |
+
if current_vector[feature_idx] > 0.7:
|
776 |
+
threshold = np.random.uniform(0.6, 0.9) # High threshold
|
777 |
+
elif current_vector[feature_idx] < 0.3:
|
778 |
+
threshold = np.random.uniform(0.1, 0.4) # Low threshold
|
779 |
+
else:
|
780 |
+
threshold = np.random.uniform(0.3, 0.7) # Middle threshold
|
781 |
+
|
782 |
+
node.grow_dendrite(feature_index=feature_idx, threshold=threshold)
|
783 |
+
else:
|
784 |
+
# Higher level dendrites can track patterns across features
|
785 |
+
threshold = np.random.uniform(0.3, 0.7)
|
786 |
+
node.grow_dendrite(threshold=threshold)
|
787 |
+
|
788 |
+
# Recursively adapt children
|
789 |
+
for child in node.children:
|
790 |
+
adapt_node(child)
|
791 |
+
|
792 |
+
# Update feature importance based on current activation
|
793 |
+
if len(self.memory_buffer) > 1:
|
794 |
+
last_vector = self.memory_buffer[-2]
|
795 |
+
current_vector = self.memory_buffer[-1]
|
796 |
+
|
797 |
+
# Changes in features that correlate with changes in price are important
|
798 |
+
price_change = current_vector[0] - last_vector[0]
|
799 |
+
for i in range(1, min(len(current_vector), len(self.feature_importance))):
|
800 |
+
feature_change = current_vector[i] - last_vector[i]
|
801 |
+
importance_update = abs(feature_change * price_change) * 0.1
|
802 |
+
self.feature_importance[i] = self.feature_importance[i] * 0.99 + importance_update
|
803 |
+
|
804 |
+
# Normalize
|
805 |
+
self.feature_importance = self.feature_importance / np.sum(self.feature_importance)
|
806 |
+
|
807 |
+
# Start adaptation from root
|
808 |
+
adapt_node(self.root)
|
809 |
+
|
810 |
+
# Periodically prune weak dendrites, but less often in early training
|
811 |
+
if np.random.random() < 0.15: # 15% chance to prune
|
812 |
+
min_strength = 0.15 # Lower threshold to keep more dendrites
|
813 |
+
self.root.prune_weak_dendrites(min_strength=min_strength)
|
814 |
+
|
815 |
+
def predict_next(self):
|
816 |
+
"""
|
817 |
+
Generate a prediction for the next time step based on recent memory
|
818 |
+
and dendrite activation patterns
|
819 |
+
"""
|
820 |
+
if not self.memory_buffer:
|
821 |
+
return None
|
822 |
+
|
823 |
+
# Get latest input
|
824 |
+
current_vector = self.memory_buffer[-1]
|
825 |
+
|
826 |
+
# Activate the network with current input
|
827 |
+
self.root.activate(current_vector, learning_rate=0) # Don't learn during prediction
|
828 |
+
|
829 |
+
# Collect predictions from all dendrites
|
830 |
+
predictions = []
|
831 |
+
|
832 |
+
def collect_predictions(node, weight=1.0):
|
833 |
+
pred = node.predict()
|
834 |
+
if pred is not None:
|
835 |
+
# Weight by strength, prediction confidence, and node level
|
836 |
+
effective_weight = weight * node.strength * node.prediction_confidence
|
837 |
+
|
838 |
+
# Named dendrites get extra weight
|
839 |
+
if node.name is not None:
|
840 |
+
effective_weight *= 1.5
|
841 |
+
|
842 |
+
# Adjust weight based on current market regime
|
843 |
+
if self.current_regime == "bullish" and node.name and "bull" in node.name:
|
844 |
+
effective_weight *= 1.5
|
845 |
+
elif self.current_regime == "bearish" and node.name and "bear" in node.name:
|
846 |
+
effective_weight *= 1.5
|
847 |
+
|
848 |
+
predictions.append((pred, effective_weight))
|
849 |
+
|
850 |
+
for child in node.children:
|
851 |
+
# Deeper nodes have less influence
|
852 |
+
child_weight = weight * 0.9
|
853 |
+
collect_predictions(child, child_weight)
|
854 |
+
|
855 |
+
# Start collection from root
|
856 |
+
collect_predictions(self.root)
|
857 |
+
|
858 |
+
# Combine weighted predictions
|
859 |
+
if not predictions:
|
860 |
+
return None
|
861 |
+
|
862 |
+
# Weight by dendrite strength and confidence
|
863 |
+
weighted_sum = np.zeros_like(predictions[0][0])
|
864 |
+
total_weight = 0
|
865 |
+
|
866 |
+
for pred, weight in predictions:
|
867 |
+
weighted_sum += pred * weight
|
868 |
+
total_weight += weight
|
869 |
+
|
870 |
+
if total_weight > 0:
|
871 |
+
return weighted_sum / total_weight
|
872 |
+
return None
|
873 |
+
|
874 |
+
def predict_days_ahead(self, days_ahead=5, current_data=None):
|
875 |
+
"""
|
876 |
+
Make predictions for multiple days ahead by feeding predictions
|
877 |
+
back into the network
|
878 |
+
"""
|
879 |
+
if current_data is not None:
|
880 |
+
# Reset memory with latest actual data
|
881 |
+
scaled_data = self.preprocess_data(current_data)
|
882 |
+
self.memory_buffer = list(scaled_data[-self.memory_window:])
|
883 |
+
|
884 |
+
if not self.memory_buffer:
|
885 |
+
return None
|
886 |
+
|
887 |
+
# Start with current memory state
|
888 |
+
predictions = []
|
889 |
+
confidences = []
|
890 |
+
|
891 |
+
# Get current market regime for context
|
892 |
+
if current_data is not None:
|
893 |
+
self.detect_market_regime(current_data)
|
894 |
+
|
895 |
+
# Make sequential predictions
|
896 |
+
for day in range(days_ahead):
|
897 |
+
# Predict next day
|
898 |
+
next_day = self.predict_next()
|
899 |
+
if next_day is None:
|
900 |
+
break
|
901 |
+
|
902 |
+
# Calculate confidence based on dendrite activations
|
903 |
+
confidence = 0.5 # Default confidence
|
904 |
+
|
905 |
+
# Higher confidence if dendrites agree
|
906 |
+
if len(self.memory_buffer) > 1:
|
907 |
+
# Check if dendrites show consistent pattern recognition
|
908 |
+
pattern_consistency = 0
|
909 |
+
total_patterns = 0
|
910 |
+
|
911 |
+
for child in self.root.children:
|
912 |
+
if child.name is not None and len(child.activation_history) > 2:
|
913 |
+
# Check for consistent activation pattern
|
914 |
+
recent_acts = child.activation_history[-3:]
|
915 |
+
if all(a > 0.6 for a in recent_acts) or all(a < 0.4 for a in recent_acts):
|
916 |
+
pattern_consistency += 1
|
917 |
+
total_patterns += 1
|
918 |
+
|
919 |
+
if total_patterns > 0:
|
920 |
+
consistency_score = pattern_consistency / total_patterns
|
921 |
+
confidence = 0.5 + 0.4 * consistency_score
|
922 |
+
|
923 |
+
# Adjust confidence based on volatility
|
924 |
+
if len(self.volatility_history) > 0:
|
925 |
+
recent_vol = self.volatility_history[-1]
|
926 |
+
# Lower confidence when volatility is high
|
927 |
+
confidence -= min(0.2, recent_vol)
|
928 |
+
|
929 |
+
# Add predictions and confidence
|
930 |
+
predictions.append(next_day)
|
931 |
+
confidences.append(confidence)
|
932 |
+
|
933 |
+
# Update memory with prediction
|
934 |
+
self.memory_buffer.append(next_day)
|
935 |
+
if len(self.memory_buffer) > self.memory_window:
|
936 |
+
self.memory_buffer.pop(0)
|
937 |
+
|
938 |
+
return np.array(predictions), np.array(confidences)
|
939 |
+
|
940 |
+
def get_trading_signals(self, predictions, confidences, threshold=None):
|
941 |
+
"""
|
942 |
+
Convert predictions to trading signals
|
943 |
+
threshold: confidence level needed for a buy/sell signal
|
944 |
+
"""
|
945 |
+
if predictions is None or len(predictions) == 0:
|
946 |
+
return []
|
947 |
+
|
948 |
+
# Use adaptive threshold based on market regime if not specified
|
949 |
+
if threshold is None:
|
950 |
+
threshold = self.confidence_threshold
|
951 |
+
|
952 |
+
signals = []
|
953 |
+
for i, (pred, conf) in enumerate(zip(predictions, confidences)):
|
954 |
+
# Use the first feature (price) direction for signal
|
955 |
+
price_direction = pred[0] # Scaled between 0-1
|
956 |
+
|
957 |
+
# Adjust confidence threshold based on market regime
|
958 |
+
adjusted_threshold = threshold
|
959 |
+
if self.current_regime == "volatile":
|
960 |
+
adjusted_threshold += 0.05 # Higher threshold in volatile markets
|
961 |
+
elif self.current_regime == "sideways":
|
962 |
+
adjusted_threshold += 0.02 # Slightly higher in sideways markets
|
963 |
+
|
964 |
+
# Generate signals based on confidence-adjusted threshold
|
965 |
+
if price_direction > 0.5 + (adjusted_threshold - 0.5) and conf > adjusted_threshold:
|
966 |
+
signals.append('BUY')
|
967 |
+
elif price_direction < 0.5 - (adjusted_threshold - 0.5) and conf > adjusted_threshold:
|
968 |
+
signals.append('SELL')
|
969 |
+
else:
|
970 |
+
signals.append('HOLD')
|
971 |
+
|
972 |
+
return signals
|
973 |
+
|
974 |
+
def visualize_dendrites(self, max_nodes=50):
|
975 |
+
"""Generate a visualization of the dendrite network structure"""
|
976 |
+
# Count nodes at each level and compute average strengths
|
977 |
+
level_counts = {}
|
978 |
+
level_strengths = {}
|
979 |
+
active_nodes = {}
|
980 |
+
named_nodes = {}
|
981 |
+
|
982 |
+
def traverse_node(node):
|
983 |
+
if node.level not in level_counts:
|
984 |
+
level_counts[node.level] = 0
|
985 |
+
level_strengths[node.level] = []
|
986 |
+
active_nodes[node.level] = 0
|
987 |
+
named_nodes[node.level] = []
|
988 |
+
|
989 |
+
level_counts[node.level] += 1
|
990 |
+
level_strengths[node.level].append(node.strength)
|
991 |
+
|
992 |
+
if node.strength > 0.6:
|
993 |
+
active_nodes[node.level] += 1
|
994 |
+
|
995 |
+
if node.name is not None:
|
996 |
+
named_nodes[node.level].append((node.name, node.strength))
|
997 |
+
|
998 |
+
for child in node.children:
|
999 |
+
traverse_node(child)
|
1000 |
+
|
1001 |
+
traverse_node(self.root)
|
1002 |
+
|
1003 |
+
# Create visualization
|
1004 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
|
1005 |
+
|
1006 |
+
# Plot 1: Node counts by level
|
1007 |
+
levels = sorted(level_counts.keys())
|
1008 |
+
counts = [level_counts[level] for level in levels]
|
1009 |
+
|
1010 |
+
ax1.bar(levels, counts, alpha=0.7)
|
1011 |
+
ax1.set_xlabel('Dendrite Level')
|
1012 |
+
ax1.set_ylabel('Number of Dendrites')
|
1013 |
+
ax1.set_title(f'Dendritic Network Structure (Fractal Dimension: {self.fractal_dim:.3f})')
|
1014 |
+
|
1015 |
+
# Add active node counts as a line
|
1016 |
+
active_counts = [active_nodes.get(level, 0) for level in levels]
|
1017 |
+
ax1_2 = ax1.twinx()
|
1018 |
+
ax1_2.plot(levels, active_counts, 'r-', marker='o')
|
1019 |
+
ax1_2.set_ylabel('Number of Active Dendrites (>0.6 strength)', color='r')
|
1020 |
+
ax1_2.tick_params(axis='y', labelcolor='r')
|
1021 |
+
|
1022 |
+
# Plot 2: Average strengths by level
|
1023 |
+
avg_strengths = [np.mean(level_strengths.get(level, [0])) for level in levels]
|
1024 |
+
|
1025 |
+
ax2.bar(levels, avg_strengths, color='green', alpha=0.7)
|
1026 |
+
ax2.set_xlabel('Dendrite Level')
|
1027 |
+
ax2.set_ylabel('Average Dendrite Strength')
|
1028 |
+
ax2.set_title('Dendrite Strength by Level')
|
1029 |
+
ax2.set_ylim([0, 1])
|
1030 |
+
|
1031 |
+
# Add specialized dendrite info
|
1032 |
+
important_nodes = []
|
1033 |
+
for level in named_nodes:
|
1034 |
+
for name, strength in named_nodes[level]:
|
1035 |
+
if strength > 0.5: # Only show strong specialized dendrites
|
1036 |
+
important_nodes.append((name, level, strength))
|
1037 |
+
|
1038 |
+
# Sort by strength
|
1039 |
+
important_nodes.sort(key=lambda x: x[2], reverse=True)
|
1040 |
+
|
1041 |
+
# Display top nodes in a text box
|
1042 |
+
if important_nodes:
|
1043 |
+
node_text = "\n".join([f"{name}: {strength:.2f}"
|
1044 |
+
for name, level, strength in important_nodes[:max_nodes]])
|
1045 |
+
ax2.text(1.05, 0.5, f"Strong Specialized Dendrites:\n{node_text}",
|
1046 |
+
transform=ax2.transAxes, fontsize=9,
|
1047 |
+
verticalalignment='center', bbox=dict(boxstyle="round", alpha=0.1))
|
1048 |
+
|
1049 |
+
# Add fractal dimension
|
1050 |
+
ax1.text(0.05, 0.95, f'Fractal Dimension: {self.fractal_dim:.3f}',
|
1051 |
+
transform=ax1.transAxes, fontsize=10,
|
1052 |
+
verticalalignment='top', bbox=dict(boxstyle="round", alpha=0.1))
|
1053 |
+
|
1054 |
+
plt.tight_layout()
|
1055 |
+
|
1056 |
+
# Create grid visualization
|
1057 |
+
fd, grid = self.estimate_fractal_dimension()
|
1058 |
+
|
1059 |
+
return fig, grid, important_nodes
|
1060 |
+
|
1061 |
+
def evaluate_performance(self, test_data):
|
1062 |
+
"""Evaluate prediction performance on test data"""
|
1063 |
+
if test_data.empty:
|
1064 |
+
return None
|
1065 |
+
|
1066 |
+
# Get market regime for test data
|
1067 |
+
self.detect_market_regime(test_data)
|
1068 |
+
|
1069 |
+
scaled_data = self.preprocess_data(test_data)
|
1070 |
+
|
1071 |
+
if len(scaled_data) < self.memory_window + 1:
|
1072 |
+
return None
|
1073 |
+
|
1074 |
+
# Initialize memory with beginning of test data
|
1075 |
+
self.memory_buffer = list(scaled_data[:self.memory_window])
|
1076 |
+
|
1077 |
+
# Make predictions and compare with actual values
|
1078 |
+
predicted_values = []
|
1079 |
+
actual_values = []
|
1080 |
+
confidences = []
|
1081 |
+
|
1082 |
+
for i in range(self.memory_window, len(scaled_data) - 1):
|
1083 |
+
# Current vector becomes last memory item
|
1084 |
+
current_vector = scaled_data[i]
|
1085 |
+
future_vector = scaled_data[i + 1]
|
1086 |
+
|
1087 |
+
# Update memory
|
1088 |
+
self.memory_buffer.append(current_vector)
|
1089 |
+
if len(self.memory_buffer) > self.memory_window:
|
1090 |
+
self.memory_buffer.pop(0)
|
1091 |
+
|
1092 |
+
# Predict next
|
1093 |
+
prediction = self.predict_next()
|
1094 |
+
if prediction is not None:
|
1095 |
+
# For simplicity, just use first feature (price) for evaluation
|
1096 |
+
predicted_values.append(prediction[0])
|
1097 |
+
actual_values.append(future_vector[0])
|
1098 |
+
|
1099 |
+
# Calculate prediction confidence
|
1100 |
+
confidence = 0.5 # Default
|
1101 |
+
|
1102 |
+
# Higher confidence if dendrites agree
|
1103 |
+
pattern_consistency = 0
|
1104 |
+
total_patterns = 0
|
1105 |
+
|
1106 |
+
for child in self.root.children:
|
1107 |
+
if child.name is not None and len(child.activation_history) > 0:
|
1108 |
+
recent_act = child.activation_history[-1]
|
1109 |
+
if recent_act > 0.7 or recent_act < 0.3: # Strong signal
|
1110 |
+
pattern_consistency += 1
|
1111 |
+
total_patterns += 1
|
1112 |
+
|
1113 |
+
if total_patterns > 0:
|
1114 |
+
consistency_score = pattern_consistency / total_patterns
|
1115 |
+
confidence = 0.5 + 0.3 * consistency_score
|
1116 |
+
|
1117 |
+
confidences.append(confidence)
|
1118 |
+
|
1119 |
+
if not predicted_values:
|
1120 |
+
return None
|
1121 |
+
|
1122 |
+
# Calculate directional prediction metrics
|
1123 |
+
pred_directions = []
|
1124 |
+
actual_directions = []
|
1125 |
+
|
1126 |
+
for i in range(1, len(predicted_values)):
|
1127 |
+
# Predicted direction: is next predicted value higher than current actual?
|
1128 |
+
pred_dir = 1 if predicted_values[i] > actual_values[i-1] else 0
|
1129 |
+
# Actual direction: is next actual value higher than current actual?
|
1130 |
+
actual_dir = 1 if actual_values[i] > actual_values[i-1] else 0
|
1131 |
+
|
1132 |
+
pred_directions.append(pred_dir)
|
1133 |
+
actual_directions.append(actual_dir)
|
1134 |
+
|
1135 |
+
# Calculate directional accuracy
|
1136 |
+
dir_accuracy = sum(p == a for p, a in zip(pred_directions, actual_directions)) / len(pred_directions) if pred_directions else 0
|
1137 |
+
|
1138 |
+
# Calculate RMSE on scaled values
|
1139 |
+
rmse = np.sqrt(np.mean((np.array(predicted_values) - np.array(actual_values)) ** 2))
|
1140 |
+
|
1141 |
+
# Calculate confidence-weighted accuracy
|
1142 |
+
weighted_correct = 0
|
1143 |
+
total_weight = 0
|
1144 |
+
|
1145 |
+
for i in range(len(pred_directions)):
|
1146 |
+
if i < len(confidences):
|
1147 |
+
weight = confidences[i]
|
1148 |
+
if pred_directions[i] == actual_directions[i]:
|
1149 |
+
weighted_correct += weight
|
1150 |
+
total_weight += weight
|
1151 |
+
|
1152 |
+
confidence_accuracy = weighted_correct / total_weight if total_weight > 0 else 0
|
1153 |
+
|
1154 |
+
# Calculate profitability metrics
|
1155 |
+
# Simple simulation of buying/selling based on predictions
|
1156 |
+
initial_capital = 10000
|
1157 |
+
capital = initial_capital
|
1158 |
+
position = 0 # Shares held
|
1159 |
+
|
1160 |
+
# Get original price data from test data for more realistic simulation
|
1161 |
+
prices = test_data['Close'].values[-len(pred_directions)-1:]
|
1162 |
+
|
1163 |
+
for i in range(len(pred_directions)):
|
1164 |
+
current_price = prices[i]
|
1165 |
+
next_price = prices[i+1]
|
1166 |
+
|
1167 |
+
# If we predict up and don't have a position, buy
|
1168 |
+
if pred_directions[i] == 1 and position == 0:
|
1169 |
+
position = capital / current_price
|
1170 |
+
capital = 0
|
1171 |
+
# If we predict down and have a position, sell
|
1172 |
+
elif pred_directions[i] == 0 and position > 0:
|
1173 |
+
capital = position * current_price
|
1174 |
+
position = 0
|
1175 |
+
|
1176 |
+
# Liquidate final position
|
1177 |
+
if position > 0:
|
1178 |
+
capital = position * prices[-1]
|
1179 |
+
|
1180 |
+
# Calculate returns
|
1181 |
+
strategy_return = (capital / initial_capital - 1) * 100
|
1182 |
+
buy_hold_return = (prices[-1] / prices[0] - 1) * 100
|
1183 |
+
|
1184 |
+
return {
|
1185 |
+
'directional_accuracy': dir_accuracy,
|
1186 |
+
'confidence_weighted_accuracy': confidence_accuracy,
|
1187 |
+
'rmse': rmse,
|
1188 |
+
'predictions': predicted_values,
|
1189 |
+
'actual': actual_values,
|
1190 |
+
'predicted_directions': pred_directions,
|
1191 |
+
'actual_directions': actual_directions,
|
1192 |
+
'confidences': confidences,
|
1193 |
+
'strategy_return': strategy_return,
|
1194 |
+
'buy_hold_return': buy_hold_return,
|
1195 |
+
'market_regime': self.current_regime,
|
1196 |
+
'test_data_length': len(test_data)
|
1197 |
+
}
|
1198 |
+
|
1199 |
+
# Fetch stock and currency data
|
1200 |
+
def fetch_stock_data(ticker, period="2y", interval="1d"):
|
1201 |
+
"""Fetch stock data from Yahoo Finance"""
|
1202 |
+
try:
|
1203 |
+
stock = yf.Ticker(ticker)
|
1204 |
+
data = stock.history(period=period, interval=interval)
|
1205 |
+
return data
|
1206 |
+
except Exception as e:
|
1207 |
+
st.error(f"Error fetching stock data: {e}")
|
1208 |
+
return pd.DataFrame()
|
1209 |
+
|
1210 |
+
def fetch_currency_data(currencies=["EURUSD=X", "JPYUSD=X", "CNYUSD=X"], period="2y", interval="1d"):
|
1211 |
+
"""Fetch currency data for Euro, Yen, and Yuan against USD"""
|
1212 |
+
try:
|
1213 |
+
currency_data = {}
|
1214 |
+
for curr in currencies:
|
1215 |
+
ticker = yf.Ticker(curr)
|
1216 |
+
data = ticker.history(period=period, interval=interval)
|
1217 |
+
if not data.empty:
|
1218 |
+
currency_data[curr.replace('=X', '')] = data['Close']
|
1219 |
+
|
1220 |
+
return pd.DataFrame(currency_data)
|
1221 |
+
except Exception as e:
|
1222 |
+
st.error(f"Error fetching currency data: {e}")
|
1223 |
+
return pd.DataFrame()
|
1224 |
+
|
1225 |
+
def fetch_sector_data(sectors=None, period="2y"):
|
1226 |
+
"""Fetch sector ETF data for additional context"""
|
1227 |
+
if sectors is None:
|
1228 |
+
# Default technology sector ETF
|
1229 |
+
sectors = ["XLK"] # Technology sector ETF
|
1230 |
+
|
1231 |
+
try:
|
1232 |
+
sector_data = {}
|
1233 |
+
for sector in sectors:
|
1234 |
+
ticker = yf.Ticker(sector)
|
1235 |
+
data = ticker.history(period=period)
|
1236 |
+
if not data.empty:
|
1237 |
+
sector_data[sector] = data['Close']
|
1238 |
+
|
1239 |
+
return pd.DataFrame(sector_data)
|
1240 |
+
except Exception as e:
|
1241 |
+
st.error(f"Error fetching sector data: {e}")
|
1242 |
+
return pd.DataFrame()
|
1243 |
+
|
1244 |
+
def train_test_split(data, test_size=0.2):
|
1245 |
+
"""Split data into training and testing sets"""
|
1246 |
+
if data.empty:
|
1247 |
+
return pd.DataFrame(), pd.DataFrame()
|
1248 |
+
|
1249 |
+
split_idx = int(len(data) * (1 - test_size))
|
1250 |
+
train_data = data.iloc[:split_idx].copy()
|
1251 |
+
test_data = data.iloc[split_idx:].copy()
|
1252 |
+
return train_data, test_data
|
1253 |
+
|
1254 |
+
def compare_with_baseline(test_data, dsa_results):
|
1255 |
+
"""Compare DSA performance with simple baseline models and ML benchmarks"""
|
1256 |
+
if test_data.empty or dsa_results is None:
|
1257 |
+
return {}
|
1258 |
+
|
1259 |
+
# Extract closing prices for simplicity
|
1260 |
+
closes = test_data['Close'].values
|
1261 |
+
|
1262 |
+
# Baseline 1: Previous day prediction (assumption: tomorrow = today)
|
1263 |
+
prev_day_accuracy = 0.5 # Default to random guessing
|
1264 |
+
if len(closes) > 2:
|
1265 |
+
# Simply predict the same direction as previous day
|
1266 |
+
baseline1_dir_pred = []
|
1267 |
+
baseline1_dir_actual = []
|
1268 |
+
|
1269 |
+
for i in range(1, len(closes)-1):
|
1270 |
+
# Previous day direction
|
1271 |
+
prev_direction = 1 if closes[i] > closes[i-1] else 0
|
1272 |
+
# Actual next day direction
|
1273 |
+
actual_direction = 1 if closes[i+1] > closes[i] else 0
|
1274 |
+
|
1275 |
+
baseline1_dir_pred.append(prev_direction)
|
1276 |
+
baseline1_dir_actual.append(actual_direction)
|
1277 |
+
|
1278 |
+
prev_day_accuracy = sum(p == a for p, a in zip(baseline1_dir_pred, baseline1_dir_actual)) / len(baseline1_dir_pred)
|
1279 |
+
|
1280 |
+
# Baseline 2: Simple moving average (10-day)
|
1281 |
+
ma_period = 10
|
1282 |
+
ma_accuracy = 0.5 # Default to random guessing
|
1283 |
+
|
1284 |
+
if len(closes) > ma_period + 1:
|
1285 |
+
ma_dir_pred = []
|
1286 |
+
ma_dir_actual = []
|
1287 |
+
|
1288 |
+
for i in range(ma_period, len(closes)-1):
|
1289 |
+
ma_value = np.mean(closes[i-ma_period:i])
|
1290 |
+
ma_dir = 1 if closes[i] > ma_value else 0 # If current price > MA, predict up
|
1291 |
+
actual_dir = 1 if closes[i+1] > closes[i] else 0
|
1292 |
+
|
1293 |
+
ma_dir_pred.append(ma_dir)
|
1294 |
+
ma_dir_actual.append(actual_dir)
|
1295 |
+
|
1296 |
+
ma_accuracy = sum(p == a for p, a in zip(ma_dir_pred, ma_dir_actual)) / len(ma_dir_pred)
|
1297 |
+
|
1298 |
+
# Baseline 3: Linear regression on recent prices
|
1299 |
+
lr_period = 14
|
1300 |
+
lr_accuracy = 0.5 # Default to random guessing
|
1301 |
+
|
1302 |
+
if len(closes) > lr_period + 1:
|
1303 |
+
lr_dir_pred = []
|
1304 |
+
lr_dir_actual = []
|
1305 |
+
|
1306 |
+
for i in range(lr_period, len(closes)-1):
|
1307 |
+
X = np.arange(lr_period).reshape(-1, 1)
|
1308 |
+
y = closes[i-lr_period:i]
|
1309 |
+
slope, intercept, _, _, _ = linregress(X.flatten(), y)
|
1310 |
+
|
1311 |
+
# Predict trend direction based on slope
|
1312 |
+
lr_dir = 1 if slope > 0 else 0
|
1313 |
+
actual_dir = 1 if closes[i+1] > closes[i] else 0
|
1314 |
+
|
1315 |
+
lr_dir_pred.append(lr_dir)
|
1316 |
+
lr_dir_actual.append(actual_dir)
|
1317 |
+
|
1318 |
+
lr_accuracy = sum(p == a for p, a in zip(lr_dir_pred, lr_dir_actual)) / len(lr_dir_pred)
|
1319 |
+
|
1320 |
+
# Baseline 4: MACD crossover strategy
|
1321 |
+
macd_accuracy = 0.5 # Default
|
1322 |
+
|
1323 |
+
if len(test_data) > 26: # Need at least 26 days for MACD
|
1324 |
+
# Calculate MACD
|
1325 |
+
ema12 = test_data['Close'].ewm(span=12, adjust=False).mean()
|
1326 |
+
ema26 = test_data['Close'].ewm(span=26, adjust=False).mean()
|
1327 |
+
macd_line = ema12 - ema26
|
1328 |
+
signal_line = macd_line.ewm(span=9, adjust=False).mean()
|
1329 |
+
|
1330 |
+
# Generate signals
|
1331 |
+
macd_dir_pred = []
|
1332 |
+
macd_dir_actual = []
|
1333 |
+
|
1334 |
+
for i in range(26, len(test_data)-1):
|
1335 |
+
# MACD crossover: Buy when MACD crosses above signal line
|
1336 |
+
macd_val = macd_line.iloc[i]
|
1337 |
+
signal_val = signal_line.iloc[i]
|
1338 |
+
macd_prev = macd_line.iloc[i-1]
|
1339 |
+
signal_prev = signal_line.iloc[i-1]
|
1340 |
+
|
1341 |
+
# Bullish crossover: MACD crosses above signal line
|
1342 |
+
bullish = macd_prev < signal_prev and macd_val > signal_val
|
1343 |
+
# Bearish crossover: MACD crosses below signal line
|
1344 |
+
bearish = macd_prev > signal_prev and macd_val < signal_val
|
1345 |
+
|
1346 |
+
if bullish:
|
1347 |
+
pred = 1 # Predict up
|
1348 |
+
elif bearish:
|
1349 |
+
pred = 0 # Predict down
|
1350 |
+
else:
|
1351 |
+
# No crossover, maintain previous direction
|
1352 |
+
pred = 1 if macd_val > signal_val else 0
|
1353 |
+
|
1354 |
+
actual = 1 if test_data['Close'].iloc[i+1] > test_data['Close'].iloc[i] else 0
|
1355 |
+
|
1356 |
+
macd_dir_pred.append(pred)
|
1357 |
+
macd_dir_actual.append(actual)
|
1358 |
+
|
1359 |
+
if macd_dir_pred:
|
1360 |
+
macd_accuracy = sum(p == a for p, a in zip(macd_dir_pred, macd_dir_actual)) / len(macd_dir_pred)
|
1361 |
+
|
1362 |
+
# Add a random baseline
|
1363 |
+
random_accuracy = 0.5 # Theoretical random guessing accuracy
|
1364 |
+
|
1365 |
+
# Calculate the theoretical best possible accuracy
|
1366 |
+
max_accuracy = max(prev_day_accuracy, ma_accuracy, lr_accuracy, macd_accuracy, random_accuracy)
|
1367 |
+
improvement = ((dsa_results['directional_accuracy'] / max_accuracy) - 1) * 100 if max_accuracy > 0 else 0
|
1368 |
+
|
1369 |
+
# Calculate the profitability comparison
|
1370 |
+
strategy_return = dsa_results.get('strategy_return', 0)
|
1371 |
+
buy_hold_return = dsa_results.get('buy_hold_return', 0)
|
1372 |
+
|
1373 |
+
return {
|
1374 |
+
'dsa_accuracy': dsa_results['directional_accuracy'],
|
1375 |
+
'dsa_confidence_accuracy': dsa_results.get('confidence_weighted_accuracy', 0),
|
1376 |
+
'previous_day_accuracy': prev_day_accuracy,
|
1377 |
+
'moving_average_accuracy': ma_accuracy,
|
1378 |
+
'linear_regression_accuracy': lr_accuracy,
|
1379 |
+
'macd_accuracy': macd_accuracy,
|
1380 |
+
'random_guessing': random_accuracy,
|
1381 |
+
'max_baseline_accuracy': max_accuracy,
|
1382 |
+
'improvement_percentage': improvement,
|
1383 |
+
'dsa_return': strategy_return,
|
1384 |
+
'buy_hold_return': buy_hold_return
|
1385 |
+
}
|
1386 |
+
|
1387 |
+
# Interactive Streamlit app for visualization
|
1388 |
+
def main():
|
1389 |
+
st.title("Enhanced Dendritic Stock Algorithm (DSA)")
|
1390 |
+
st.markdown("""
|
1391 |
+
### Hierarchical Dendritic Network for Stock Prediction
|
1392 |
+
|
1393 |
+
This system implements a biological-inspired dendritic network that forms fractal patterns
|
1394 |
+
at the boundaries between different processing regimes. These patterns emerge naturally
|
1395 |
+
from the self-organizing dynamics, demonstrating our theory about boundary-emergent complexity.
|
1396 |
+
""")
|
1397 |
+
|
1398 |
+
st.sidebar.header("Settings")
|
1399 |
+
|
1400 |
+
# Stock selection
|
1401 |
+
ticker_options = {
|
1402 |
+
"Apple": "AAPL",
|
1403 |
+
"Microsoft": "MSFT",
|
1404 |
+
"Google": "GOOGL",
|
1405 |
+
"Amazon": "AMZN",
|
1406 |
+
"Tesla": "TSLA",
|
1407 |
+
"Meta": "META",
|
1408 |
+
"Nvidia": "NVDA",
|
1409 |
+
"Berkshire Hathaway": "BRK-B",
|
1410 |
+
"Visa": "V",
|
1411 |
+
"JPMorgan Chase": "JPM",
|
1412 |
+
"S&P 500 ETF": "SPY",
|
1413 |
+
"Nasdaq ETF": "QQQ"
|
1414 |
+
}
|
1415 |
+
|
1416 |
+
ticker_name = st.sidebar.selectbox(
|
1417 |
+
"Select Stock",
|
1418 |
+
list(ticker_options.keys()),
|
1419 |
+
index=0
|
1420 |
+
)
|
1421 |
+
ticker = ticker_options[ticker_name]
|
1422 |
+
|
1423 |
+
# Add option for custom ticker
|
1424 |
+
custom_ticker = st.sidebar.text_input("Or enter custom ticker:", "")
|
1425 |
+
if custom_ticker:
|
1426 |
+
ticker = custom_ticker.upper()
|
1427 |
+
|
1428 |
+
# Optional sector ETF to include
|
1429 |
+
include_sector = st.sidebar.checkbox("Include Sector ETF data", value=True)
|
1430 |
+
sector_etf = None
|
1431 |
+
if include_sector:
|
1432 |
+
sector_etf = st.sidebar.selectbox(
|
1433 |
+
"Select Sector ETF",
|
1434 |
+
["XLK", "XLF", "XLE", "XLV", "XLI", "XLY", "XLP", "XLU", "XLB", "XLRE"],
|
1435 |
+
index=0,
|
1436 |
+
help="XLK=Technology, XLF=Financials, XLE=Energy, XLV=Healthcare, XLI=Industrials"
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
# Training parameters
|
1440 |
+
st.sidebar.subheader("Training Parameters")
|
1441 |
+
train_period = st.sidebar.selectbox(
|
1442 |
+
"Training Period",
|
1443 |
+
["6mo", "1y", "2y", "5y", "max"],
|
1444 |
+
index=1
|
1445 |
+
)
|
1446 |
+
test_size = st.sidebar.slider("Test Data Size (%)", 10, 50, 20)
|
1447 |
+
epochs = st.sidebar.slider("Training Epochs", 1, 10, 3)
|
1448 |
+
|
1449 |
+
# Network parameters
|
1450 |
+
st.sidebar.subheader("Network Parameters")
|
1451 |
+
dendrites_per_level = st.sidebar.slider("Initial Dendrites per Level", 3, 20, 10)
|
1452 |
+
max_levels = st.sidebar.slider("Maximum Hierarchy Levels", 1, 5, 3)
|
1453 |
+
memory_window = st.sidebar.slider("Memory Window (Days)", 5, 30, 15)
|
1454 |
+
|
1455 |
+
# Prediction parameters
|
1456 |
+
st.sidebar.subheader("Prediction Parameters")
|
1457 |
+
days_ahead = st.sidebar.slider("Days to Predict Ahead", 1, 30, 5)
|
1458 |
+
signal_threshold = st.sidebar.slider("Base Signal Threshold", 0.51, 0.99, 0.55,
|
1459 |
+
help="Higher values require more confidence for buy/sell signals")
|
1460 |
+
|
1461 |
+
# Advanced options
|
1462 |
+
st.sidebar.subheader("Advanced Options")
|
1463 |
+
show_advanced = st.sidebar.checkbox("Show Advanced Metrics", value=False)
|
1464 |
+
|
1465 |
+
# Load data on button click
|
1466 |
+
if st.sidebar.button("Load Data and Train"):
|
1467 |
+
# Show loading message
|
1468 |
+
with st.spinner("Fetching stock and market data..."):
|
1469 |
+
stock_data = fetch_stock_data(ticker, period=train_period)
|
1470 |
+
|
1471 |
+
if stock_data.empty:
|
1472 |
+
st.error(f"No data found for ticker {ticker}")
|
1473 |
+
else:
|
1474 |
+
# Progress bar for all steps
|
1475 |
+
progress_bar = st.progress(0)
|
1476 |
+
total_steps = 7
|
1477 |
+
current_step = 0
|
1478 |
+
|
1479 |
+
# Show basic info
|
1480 |
+
st.subheader(f"{ticker} Stock Information")
|
1481 |
+
st.write(f"Data from {stock_data.index[0].date()} to {stock_data.index[-1].date()}")
|
1482 |
+
st.write(f"Total days: {len(stock_data)}")
|
1483 |
+
|
1484 |
+
# Fetch currency data
|
1485 |
+
currency_data = fetch_currency_data(period=train_period)
|
1486 |
+
if not currency_data.empty:
|
1487 |
+
st.write("Currency data loaded:", list(currency_data.columns))
|
1488 |
+
|
1489 |
+
# Add sector data if requested
|
1490 |
+
sector_data = None
|
1491 |
+
if include_sector and sector_etf:
|
1492 |
+
sector_data = fetch_sector_data([sector_etf], period=train_period)
|
1493 |
+
if not sector_data.empty:
|
1494 |
+
st.write(f"Sector ETF data loaded: {sector_etf}")
|
1495 |
+
|
1496 |
+
# Progress update
|
1497 |
+
current_step += 1
|
1498 |
+
progress_bar.progress(current_step / total_steps)
|
1499 |
+
|
1500 |
+
# Add currency data to stock data
|
1501 |
+
combined_data = stock_data.copy()
|
1502 |
+
if not currency_data.empty:
|
1503 |
+
for curr in currency_data.columns:
|
1504 |
+
# Align currency data to stock data dates
|
1505 |
+
currency_aligned = currency_data[curr].reindex(combined_data.index, method='ffill')
|
1506 |
+
combined_data[f'Currency_{curr}'] = currency_aligned
|
1507 |
+
|
1508 |
+
# Add sector data if available
|
1509 |
+
if sector_data is not None and not sector_data.empty:
|
1510 |
+
for sect in sector_data.columns:
|
1511 |
+
# Align sector data to stock data dates
|
1512 |
+
sector_aligned = sector_data[sect].reindex(combined_data.index, method='ffill')
|
1513 |
+
# Calculate daily returns
|
1514 |
+
combined_data[f'Sector_{sect}'] = sector_aligned.pct_change().fillna(0)
|
1515 |
+
|
1516 |
+
# Progress update
|
1517 |
+
current_step += 1
|
1518 |
+
progress_bar.progress(current_step / total_steps)
|
1519 |
+
|
1520 |
+
# Split into train/test
|
1521 |
+
train_data, test_data = train_test_split(combined_data, test_size=test_size/100)
|
1522 |
+
|
1523 |
+
# Create and configure network
|
1524 |
+
feature_count = 16 # Fixed based on extract_features method
|
1525 |
+
network = HierarchicalDendriticNetwork(
|
1526 |
+
input_dim=feature_count,
|
1527 |
+
max_levels=max_levels,
|
1528 |
+
initial_dendrites_per_level=dendrites_per_level
|
1529 |
+
)
|
1530 |
+
network.memory_window = memory_window
|
1531 |
+
|
1532 |
+
# Progress update
|
1533 |
+
current_step += 1
|
1534 |
+
progress_bar.progress(current_step / total_steps)
|
1535 |
+
|
1536 |
+
# Train the network
|
1537 |
+
with st.spinner("Training dendritic network..."):
|
1538 |
+
network.train(train_data, epochs=epochs)
|
1539 |
+
|
1540 |
+
# Progress update
|
1541 |
+
current_step += 1
|
1542 |
+
progress_bar.progress(current_step / total_steps)
|
1543 |
+
|
1544 |
+
# Evaluate on test data
|
1545 |
+
with st.spinner("Evaluating performance..."):
|
1546 |
+
eval_results = network.evaluate_performance(test_data)
|
1547 |
+
|
1548 |
+
if eval_results:
|
1549 |
+
st.subheader("Performance Evaluation")
|
1550 |
+
st.write(f"Directional Accuracy: {eval_results['directional_accuracy']:.4f}")
|
1551 |
+
st.write(f"Confidence-Weighted Accuracy: {eval_results['confidence_weighted_accuracy']:.4f}")
|
1552 |
+
st.write(f"RMSE (scaled): {eval_results['rmse']:.4f}")
|
1553 |
+
st.write(f"Detected Market Regime: {eval_results['market_regime'].upper()}")
|
1554 |
+
|
1555 |
+
# Show returns
|
1556 |
+
st.write(f"DSA Trading Return: {eval_results['strategy_return']:.2f}%")
|
1557 |
+
st.write(f"Buy & Hold Return: {eval_results['buy_hold_return']:.2f}%")
|
1558 |
+
|
1559 |
+
# Compare with baselines
|
1560 |
+
baseline_results = compare_with_baseline(test_data, eval_results)
|
1561 |
+
|
1562 |
+
# Progress update
|
1563 |
+
current_step += 1
|
1564 |
+
progress_bar.progress(current_step / total_steps)
|
1565 |
+
|
1566 |
+
if baseline_results:
|
1567 |
+
st.subheader("Comparison with Baseline Models")
|
1568 |
+
|
1569 |
+
# Format improvement percentage
|
1570 |
+
improvement = baseline_results.get('improvement_percentage', 0)
|
1571 |
+
improvement_text = f"+{improvement:.2f}%" if improvement > 0 else f"{improvement:.2f}%"
|
1572 |
+
|
1573 |
+
results_df = pd.DataFrame({
|
1574 |
+
'Model': [
|
1575 |
+
f"Dendritic Stock Algorithm ({improvement_text})",
|
1576 |
+
'Previous Day Strategy',
|
1577 |
+
'Moving Average',
|
1578 |
+
'Linear Regression',
|
1579 |
+
'MACD Crossover',
|
1580 |
+
'Random Guessing'
|
1581 |
+
],
|
1582 |
+
'Directional Accuracy': [
|
1583 |
+
baseline_results['dsa_accuracy'],
|
1584 |
+
baseline_results['previous_day_accuracy'],
|
1585 |
+
baseline_results['moving_average_accuracy'],
|
1586 |
+
baseline_results['linear_regression_accuracy'],
|
1587 |
+
baseline_results['macd_accuracy'],
|
1588 |
+
baseline_results['random_guessing']
|
1589 |
+
]
|
1590 |
+
})
|
1591 |
+
|
1592 |
+
# Plot comparison
|
1593 |
+
fig = px.bar(results_df, x='Model', y='Directional Accuracy',
|
1594 |
+
title="Model Comparison - Directional Accuracy",
|
1595 |
+
color='Directional Accuracy',
|
1596 |
+
color_continuous_scale=px.colors.sequential.Blues)
|
1597 |
+
|
1598 |
+
fig.add_hline(y=0.5, line_dash="dash", line_color="red",
|
1599 |
+
annotation_text="Random Guess (50%)")
|
1600 |
+
|
1601 |
+
fig.update_layout(
|
1602 |
+
yaxis_range=[0.4, max(0.75, baseline_results['dsa_accuracy'] * 1.1)],
|
1603 |
+
xaxis_title="",
|
1604 |
+
yaxis_title="Directional Accuracy"
|
1605 |
+
)
|
1606 |
+
|
1607 |
+
st.plotly_chart(fig, use_container_width=True)
|
1608 |
+
|
1609 |
+
# Show return comparison
|
1610 |
+
returns_df = pd.DataFrame({
|
1611 |
+
'Strategy': ['Dendritic Stock Algorithm', 'Buy & Hold'],
|
1612 |
+
'Return (%)': [
|
1613 |
+
baseline_results['dsa_return'],
|
1614 |
+
baseline_results['buy_hold_return']
|
1615 |
+
]
|
1616 |
+
})
|
1617 |
+
|
1618 |
+
fig_returns = px.bar(returns_df, x='Strategy', y='Return (%)',
|
1619 |
+
title="Return Comparison",
|
1620 |
+
color='Return (%)',
|
1621 |
+
color_continuous_scale=px.colors.sequential.Greens)
|
1622 |
+
|
1623 |
+
st.plotly_chart(fig_returns, use_container_width=True)
|
1624 |
+
|
1625 |
+
# Progress update
|
1626 |
+
current_step += 1
|
1627 |
+
progress_bar.progress(current_step / total_steps)
|
1628 |
+
|
1629 |
+
# Make future predictions
|
1630 |
+
with st.spinner("Generating predictions..."):
|
1631 |
+
latest_data = combined_data.tail(memory_window)
|
1632 |
+
predictions, confidences = network.predict_days_ahead(days_ahead, latest_data)
|
1633 |
+
|
1634 |
+
if predictions is not None:
|
1635 |
+
signals = network.get_trading_signals(predictions, confidences, signal_threshold)
|
1636 |
+
|
1637 |
+
# Convert predictions back to price scale
|
1638 |
+
latest_close = latest_data['Close'].iloc[-1]
|
1639 |
+
prediction_values = []
|
1640 |
+
|
1641 |
+
# Scale based on the first feature (price) direction
|
1642 |
+
for i, pred in enumerate(predictions):
|
1643 |
+
if i == 0:
|
1644 |
+
direction = 1 if pred[0] > 0.5 else -1
|
1645 |
+
# Adjust strength by distance from 0.5
|
1646 |
+
strength = abs(pred[0] - 0.5) * 4 # Max 2% change
|
1647 |
+
predicted_price = latest_close * (1 + direction * strength/100)
|
1648 |
+
else:
|
1649 |
+
prev_predicted = prediction_values[-1]
|
1650 |
+
direction = 1 if pred[0] > 0.5 else -1
|
1651 |
+
strength = abs(pred[0] - 0.5) * 4
|
1652 |
+
predicted_price = prev_predicted * (1 + direction * strength/100)
|
1653 |
+
|
1654 |
+
prediction_values.append(predicted_price)
|
1655 |
+
|
1656 |
+
# Create date range for predictions
|
1657 |
+
last_date = latest_data.index[-1]
|
1658 |
+
prediction_dates = pd.date_range(start=last_date + pd.Timedelta(days=1), periods=days_ahead, freq='B')
|
1659 |
+
|
1660 |
+
# Display predictions
|
1661 |
+
st.subheader(f"Predictions for Next {days_ahead} Trading Days")
|
1662 |
+
|
1663 |
+
pred_df = pd.DataFrame({
|
1664 |
+
'Date': prediction_dates,
|
1665 |
+
'Predicted Price': [f"${price:.2f}" for price in prediction_values],
|
1666 |
+
'Signal': signals,
|
1667 |
+
'Confidence': [f"{conf:.2f}" for conf in confidences]
|
1668 |
+
})
|
1669 |
+
|
1670 |
+
st.dataframe(pred_df, use_container_width=True)
|
1671 |
+
|
1672 |
+
# Plot historical + predictions
|
1673 |
+
fig = go.Figure()
|
1674 |
+
|
1675 |
+
# Add historical prices
|
1676 |
+
fig.add_trace(go.Scatter(
|
1677 |
+
x=combined_data.index,
|
1678 |
+
y=combined_data['Close'],
|
1679 |
+
mode='lines',
|
1680 |
+
name='Historical',
|
1681 |
+
line=dict(color='blue', width=2)
|
1682 |
+
))
|
1683 |
+
|
1684 |
+
# Add predictions
|
1685 |
+
fig.add_trace(go.Scatter(
|
1686 |
+
x=prediction_dates,
|
1687 |
+
y=prediction_values,
|
1688 |
+
mode='lines+markers',
|
1689 |
+
name='Predicted',
|
1690 |
+
line=dict(dash='dash', color='darkblue'),
|
1691 |
+
marker=dict(size=10)
|
1692 |
+
))
|
1693 |
+
|
1694 |
+
# Shade prediction confidence intervals
|
1695 |
+
high_bound = [price * (1 + (1 - conf) * 0.05) for price, conf in zip(prediction_values, confidences)]
|
1696 |
+
low_bound = [price * (1 - (1 - conf) * 0.05) for price, conf in zip(prediction_values, confidences)]
|
1697 |
+
|
1698 |
+
fig.add_trace(go.Scatter(
|
1699 |
+
x=prediction_dates,
|
1700 |
+
y=high_bound,
|
1701 |
+
mode='lines',
|
1702 |
+
line=dict(width=0),
|
1703 |
+
showlegend=False
|
1704 |
+
))
|
1705 |
+
|
1706 |
+
fig.add_trace(go.Scatter(
|
1707 |
+
x=prediction_dates,
|
1708 |
+
y=low_bound,
|
1709 |
+
mode='lines',
|
1710 |
+
line=dict(width=0),
|
1711 |
+
fill='tonexty',
|
1712 |
+
fillcolor='rgba(0, 0, 255, 0.1)',
|
1713 |
+
name='Confidence Interval'
|
1714 |
+
))
|
1715 |
+
|
1716 |
+
# Add signals
|
1717 |
+
for i, signal in enumerate(signals):
|
1718 |
+
color = 'green' if signal == 'BUY' else 'red' if signal == 'SELL' else 'gray'
|
1719 |
+
|
1720 |
+
fig.add_annotation(
|
1721 |
+
x=prediction_dates[i],
|
1722 |
+
y=prediction_values[i],
|
1723 |
+
text=signal,
|
1724 |
+
showarrow=True,
|
1725 |
+
arrowhead=1,
|
1726 |
+
arrowsize=1,
|
1727 |
+
arrowwidth=2,
|
1728 |
+
arrowcolor=color
|
1729 |
+
)
|
1730 |
+
|
1731 |
+
fig.update_layout(
|
1732 |
+
title=f"{ticker} Stock Price with DSA Predictions",
|
1733 |
+
xaxis_title="Date",
|
1734 |
+
yaxis_title="Price",
|
1735 |
+
legend_title="Data Source",
|
1736 |
+
hovermode="x unified"
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
st.plotly_chart(fig, use_container_width=True)
|
1740 |
+
|
1741 |
+
# Progress update - complete
|
1742 |
+
current_step += 1
|
1743 |
+
progress_bar.progress(current_step / total_steps)
|
1744 |
+
progress_bar.empty()
|
1745 |
+
|
1746 |
+
# Visualize dendritic network
|
1747 |
+
with st.spinner("Visualizing dendritic network..."):
|
1748 |
+
st.subheader("Dendritic Network Visualization")
|
1749 |
+
|
1750 |
+
# Network structure
|
1751 |
+
fig, grid, important_nodes = network.visualize_dendrites()
|
1752 |
+
st.pyplot(fig)
|
1753 |
+
|
1754 |
+
# Activation grid (fractal visualization)
|
1755 |
+
st.subheader("Dendritic Activation Pattern (The Fractal Boundary)")
|
1756 |
+
st.markdown("""
|
1757 |
+
This visualization represents the dendritic network's activation pattern, showing how information
|
1758 |
+
is processed at the boundaries between different dendrite clusters. The fractal patterns emerge
|
1759 |
+
at these boundaries - just as we discussed about event horizons and neural boundaries.
|
1760 |
+
|
1761 |
+
Key observations:
|
1762 |
+
- Brighter regions show stronger dendrite activations
|
1763 |
+
- The complex patterns along boundaries represent areas where the network is processing the most information
|
1764 |
+
- Higher fractal dimension values indicate more complex boundary structures, which typically correlate with better prediction capability
|
1765 |
+
""")
|
1766 |
+
|
1767 |
+
st.write(f"**Estimated Fractal Dimension: {network.fractal_dim:.3f}**")
|
1768 |
+
|
1769 |
+
if network.fractal_dim > 1.5:
|
1770 |
+
st.success("High fractal dimension suggests complex boundary processing - good for prediction!")
|
1771 |
+
elif network.fractal_dim > 1.2:
|
1772 |
+
st.info("Moderate fractal dimension indicates developing complexity at boundaries")
|
1773 |
+
else:
|
1774 |
+
st.warning("Low fractal dimension suggests simple boundaries - prediction may be limited")
|
1775 |
+
|
1776 |
+
# Plot the grid as a heatmap
|
1777 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
1778 |
+
im = ax.imshow(grid, cmap='viridis')
|
1779 |
+
plt.colorbar(im, ax=ax, label='Activation Strength')
|
1780 |
+
ax.set_title("Dendritic Activation Grid - Fractal Boundary Patterns")
|
1781 |
+
st.pyplot(fig)
|
1782 |
+
|
1783 |
+
# Show important dendrites
|
1784 |
+
if important_nodes:
|
1785 |
+
st.subheader("Active Specialized Dendrites")
|
1786 |
+
st.markdown("These specialized dendrites have developed strong activations, indicating the network has learned to recognize specific patterns:")
|
1787 |
+
|
1788 |
+
# Format into two columns
|
1789 |
+
col1, col2 = st.columns(2)
|
1790 |
+
half_nodes = len(important_nodes) // 2 + len(important_nodes) % 2
|
1791 |
+
|
1792 |
+
with col1:
|
1793 |
+
for name, level, strength in important_nodes[:half_nodes]:
|
1794 |
+
if strength > 0.7:
|
1795 |
+
st.success(f"**{name}:** {strength:.2f}")
|
1796 |
+
elif strength > 0.5:
|
1797 |
+
st.info(f"**{name}:** {strength:.2f}")
|
1798 |
+
else:
|
1799 |
+
st.write(f"**{name}:** {strength:.2f}")
|
1800 |
+
|
1801 |
+
with col2:
|
1802 |
+
for name, level, strength in important_nodes[half_nodes:]:
|
1803 |
+
if strength > 0.7:
|
1804 |
+
st.success(f"**{name}:** {strength:.2f}")
|
1805 |
+
elif strength > 0.5:
|
1806 |
+
st.info(f"**{name}:** {strength:.2f}")
|
1807 |
+
else:
|
1808 |
+
st.write(f"**{name}:** {strength:.2f}")
|
1809 |
+
|
1810 |
+
# Explain the connection to our theory
|
1811 |
+
st.markdown("""
|
1812 |
+
### Connection to Boundary Theory
|
1813 |
+
|
1814 |
+
The patterns you see above demonstrate our theory about boundary-emergent complexity:
|
1815 |
+
|
1816 |
+
1. **Temporal Integration**: These patterns encode the network's memory (past), processing (present), and prediction (future)
|
1817 |
+
|
1818 |
+
2. **Critical Behavior**: The dendrites naturally organize at the "edge of chaos" - not too ordered, not too random
|
1819 |
+
|
1820 |
+
3. **Fractal Structure**: The self-similar patterns at multiple scales allow the system to recognize patterns across different timeframes
|
1821 |
+
|
1822 |
+
This visual representation shows how our dendritic network creates complex structures at the boundaries between different processing regimes - exactly as our theory predicted.
|
1823 |
+
""")
|
1824 |
+
|
1825 |
+
# If advanced metrics were requested, show them
|
1826 |
+
if show_advanced:
|
1827 |
+
st.subheader("Advanced Analysis")
|
1828 |
+
|
1829 |
+
# Show feature importance
|
1830 |
+
feature_names = [
|
1831 |
+
"Price", "Returns", "Volatility", "Volume", "Momentum",
|
1832 |
+
"MACD", "Bollinger", "RSI", "Stochastic", "ATR",
|
1833 |
+
"OBV", "MFI", "SMA Dist", "EMA Cross", "Fibonacci"
|
1834 |
+
]
|
1835 |
+
|
1836 |
+
# Only show top features to keep it clean
|
1837 |
+
imp_idx = np.argsort(network.feature_importance)[-10:]
|
1838 |
+
|
1839 |
+
feature_imp_df = pd.DataFrame({
|
1840 |
+
'Feature': [feature_names[i] if i < len(feature_names) else f"Feature {i}" for i in imp_idx],
|
1841 |
+
'Importance': network.feature_importance[imp_idx]
|
1842 |
+
})
|
1843 |
+
|
1844 |
+
fig_imp = px.bar(feature_imp_df, x='Feature', y='Importance',
|
1845 |
+
title="Feature Importance",
|
1846 |
+
color='Importance',
|
1847 |
+
color_continuous_scale=px.colors.sequential.Viridis)
|
1848 |
+
|
1849 |
+
st.plotly_chart(fig_imp, use_container_width=True)
|
1850 |
+
|
1851 |
+
# Show prediction confidence over time
|
1852 |
+
if 'confidences' in eval_results:
|
1853 |
+
conf_df = pd.DataFrame({
|
1854 |
+
'Time Step': list(range(len(eval_results['confidences']))),
|
1855 |
+
'Confidence': eval_results['confidences']
|
1856 |
+
})
|
1857 |
+
|
1858 |
+
fig_conf = px.line(conf_df, x='Time Step', y='Confidence',
|
1859 |
+
title="Prediction Confidence Over Time")
|
1860 |
+
|
1861 |
+
st.plotly_chart(fig_conf, use_container_width=True)
|
1862 |
+
|
1863 |
+
if __name__ == "__main__":
|
1864 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy>=1.20.0
|
2 |
+
pandas>=1.3.0
|
3 |
+
yfinance>=0.1.70
|
4 |
+
matplotlib>=3.4.0
|
5 |
+
plotly>=5.5.0
|
6 |
+
scikit-learn>=1.0.0
|
7 |
+
streamlit>=1.8.0
|
8 |
+
statsmodels>=0.13.0
|
9 |
+
scipy>=1.7.0
|
10 |
+
tqdm>=4.62.0
|
11 |
+
pytz>=2021.3
|
12 |
+
requests>=2.26.0
|
13 |
+
joblib>=1.1.0
|
14 |
+
ta>=0.7.0 # Technical analysis indicators
|
15 |
+
numba>=0.54.0 # For performance optimization (optional)
|