Upload 3 files
Browse files- app.py +285 -0
- readme (3).md +56 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from mpl_toolkits.mplot3d import Axes3D
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
import random
|
9 |
+
import requests
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
+
import time
|
12 |
+
import networkx as nx
|
13 |
+
|
14 |
+
# Constants
|
15 |
+
MAX_DEPTH = 15
|
16 |
+
MAX_CHILDREN = 5
|
17 |
+
SPACE_SIZE = 10
|
18 |
+
GROWTH_PROBABILITY = 0.2 # Increased from 0.1
|
19 |
+
|
20 |
+
class FractalNode:
|
21 |
+
def __init__(self, node_id, position):
|
22 |
+
self.id = node_id
|
23 |
+
self.position = position
|
24 |
+
self.connections = {}
|
25 |
+
self.activation = 0.0
|
26 |
+
|
27 |
+
def activate(self, input_signal):
|
28 |
+
self.activation = np.tanh(input_signal)
|
29 |
+
|
30 |
+
def connect(self, other_node, weight):
|
31 |
+
self.connections[other_node.id] = weight
|
32 |
+
|
33 |
+
class FractalNetwork:
|
34 |
+
def __init__(self, initial_nodes=5, space_size=SPACE_SIZE):
|
35 |
+
self.nodes = {}
|
36 |
+
self.space_size = space_size
|
37 |
+
self.graph = nx.Graph()
|
38 |
+
self.cycle_count = 0
|
39 |
+
self.memory = ""
|
40 |
+
self.create_initial_nodes(initial_nodes)
|
41 |
+
|
42 |
+
def create_initial_nodes(self, num_nodes):
|
43 |
+
for i in range(num_nodes):
|
44 |
+
position = np.random.rand(3) * self.space_size
|
45 |
+
self.add_node(FractalNode(i, position))
|
46 |
+
|
47 |
+
def add_node(self, node):
|
48 |
+
self.nodes[node.id] = node
|
49 |
+
self.graph.add_node(node.id, pos=node.position)
|
50 |
+
|
51 |
+
def connect_nodes(self, node1, node2, weight):
|
52 |
+
node1.connect(node2, weight)
|
53 |
+
node2.connect(node1, weight)
|
54 |
+
self.graph.add_edge(node1.id, node2.id, weight=weight)
|
55 |
+
|
56 |
+
def grow(self):
|
57 |
+
new_node_id = len(self.nodes)
|
58 |
+
position = np.random.rand(3) * self.space_size
|
59 |
+
new_node = FractalNode(new_node_id, position)
|
60 |
+
self.add_node(new_node)
|
61 |
+
|
62 |
+
for node in self.nodes.values():
|
63 |
+
if node.id != new_node_id:
|
64 |
+
distance = np.linalg.norm(np.array(new_node.position) - np.array(node.position))
|
65 |
+
if distance < self.space_size * 0.2:
|
66 |
+
weight = np.random.rand()
|
67 |
+
self.connect_nodes(new_node, node, weight)
|
68 |
+
|
69 |
+
def hebbian_learning(self):
|
70 |
+
for node in self.nodes.values():
|
71 |
+
for other_node_id, weight in list(node.connections.items()):
|
72 |
+
other_node = self.nodes[other_node_id]
|
73 |
+
delta_weight = 0.01 * node.activation * other_node.activation
|
74 |
+
new_weight = np.clip(weight + delta_weight, 0, 1) # Clip weight to [0, 1]
|
75 |
+
node.connections[other_node_id] = new_weight
|
76 |
+
other_node.connections[node.id] = new_weight
|
77 |
+
self.graph[node.id][other_node_id]['weight'] = new_weight
|
78 |
+
|
79 |
+
def process_input(self, input_text):
|
80 |
+
input_signal = sum(ord(c) for c in input_text) / len(input_text) / 128
|
81 |
+
for node in self.nodes.values():
|
82 |
+
node.activate(input_signal)
|
83 |
+
self.hebbian_learning()
|
84 |
+
if random.random() < GROWTH_PROBABILITY:
|
85 |
+
self.grow()
|
86 |
+
|
87 |
+
def think(self):
|
88 |
+
self.cycle_count += 1
|
89 |
+
for node in self.nodes.values():
|
90 |
+
node.activate(np.random.rand())
|
91 |
+
self.hebbian_learning()
|
92 |
+
if random.random() < GROWTH_PROBABILITY:
|
93 |
+
self.grow()
|
94 |
+
return f"Cycle {self.cycle_count}: {chr(int(np.mean([node.activation for node in self.nodes.values()]) * 26) + 97)}"
|
95 |
+
|
96 |
+
def chat(self, input_text):
|
97 |
+
self.memory += input_text + " "
|
98 |
+
if len(self.memory) > 1000:
|
99 |
+
self.memory = self.memory[-1000:]
|
100 |
+
self.process_input(input_text)
|
101 |
+
response = ''.join(random.choice(self.memory) for _ in range(20))
|
102 |
+
self.cycle_count += 1
|
103 |
+
return f"Cycle {self.cycle_count}: {response}"
|
104 |
+
|
105 |
+
def save_state(self, filename):
|
106 |
+
with open(filename, 'wb') as f:
|
107 |
+
pickle.dump(self, f)
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def load_state(filename):
|
111 |
+
with open(filename, 'rb') as f:
|
112 |
+
return pickle.load(f)
|
113 |
+
|
114 |
+
def visualize(self, zoom=1.0):
|
115 |
+
fig = plt.figure(figsize=(10, 8))
|
116 |
+
ax = fig.add_subplot(111, projection='3d')
|
117 |
+
|
118 |
+
pos = nx.get_node_attributes(self.graph, 'pos')
|
119 |
+
|
120 |
+
for edge in self.graph.edges():
|
121 |
+
start = pos[edge[0]]
|
122 |
+
end = pos[edge[1]]
|
123 |
+
weight = self.graph[edge[0]][edge[1]]['weight']
|
124 |
+
ax.plot([start[0], end[0]], [start[1], end[1]], [start[2], end[2]],
|
125 |
+
color='b', alpha=min(weight, 1.0), linewidth=weight*3)
|
126 |
+
|
127 |
+
for node_id, node_pos in pos.items():
|
128 |
+
ax.scatter(node_pos[0], node_pos[1], node_pos[2],
|
129 |
+
color='r', s=100*self.nodes[node_id].activation+50)
|
130 |
+
|
131 |
+
center = self.space_size / 2
|
132 |
+
ax.set_xlim(center - self.space_size/(2*zoom), center + self.space_size/(2*zoom))
|
133 |
+
ax.set_ylim(center - self.space_size/(2*zoom), center + self.space_size/(2*zoom))
|
134 |
+
ax.set_zlim(center - self.space_size/(2*zoom), center + self.space_size/(2*zoom))
|
135 |
+
plt.title(f"Fractal Network - {len(self.nodes)} nodes")
|
136 |
+
|
137 |
+
buf = BytesIO()
|
138 |
+
plt.savefig(buf, format='png')
|
139 |
+
buf.seek(0)
|
140 |
+
plt.close(fig)
|
141 |
+
image = Image.open(buf)
|
142 |
+
return image
|
143 |
+
|
144 |
+
def fetch_wikipedia_content(topic):
|
145 |
+
url = f"https://en.wikipedia.org/wiki/{topic}"
|
146 |
+
response = requests.get(url)
|
147 |
+
if response.status_code == 200:
|
148 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
149 |
+
paragraphs = soup.find_all('p')
|
150 |
+
content = ' '.join([p.text for p in paragraphs])
|
151 |
+
return content
|
152 |
+
else:
|
153 |
+
return None
|
154 |
+
|
155 |
+
def gradio_interface():
|
156 |
+
network = FractalNetwork()
|
157 |
+
zoom_level = 1.0
|
158 |
+
|
159 |
+
def cycle_ai(num_cycles):
|
160 |
+
nonlocal zoom_level
|
161 |
+
thoughts = []
|
162 |
+
for _ in range(num_cycles):
|
163 |
+
thought = network.think()
|
164 |
+
thoughts.append(thought)
|
165 |
+
|
166 |
+
image = network.visualize(zoom_level)
|
167 |
+
|
168 |
+
return "\n".join(thoughts), image
|
169 |
+
|
170 |
+
def save_state(filename):
|
171 |
+
if filename.strip() == "":
|
172 |
+
return "Please enter a valid filename."
|
173 |
+
try:
|
174 |
+
network.save_state(filename)
|
175 |
+
return f"Network state saved as {filename}"
|
176 |
+
except Exception as e:
|
177 |
+
return f"Error saving network state: {str(e)}"
|
178 |
+
|
179 |
+
def load_state(file):
|
180 |
+
if file is None:
|
181 |
+
return "Please upload a file."
|
182 |
+
try:
|
183 |
+
loaded_network = FractalNetwork.load_state(file.name)
|
184 |
+
nonlocal network
|
185 |
+
network = loaded_network
|
186 |
+
return f"Loaded network state from {file.name}"
|
187 |
+
except Exception as e:
|
188 |
+
return f"Error loading network state: {str(e)}"
|
189 |
+
|
190 |
+
def recreate_network(initial_nodes):
|
191 |
+
nonlocal network, zoom_level
|
192 |
+
network = FractalNetwork(initial_nodes=initial_nodes)
|
193 |
+
image = network.visualize(zoom_level)
|
194 |
+
return f"Network recreated with {initial_nodes} initial nodes", image
|
195 |
+
|
196 |
+
def train_on_wikipedia(topic):
|
197 |
+
nonlocal zoom_level
|
198 |
+
content = fetch_wikipedia_content(topic)
|
199 |
+
if content:
|
200 |
+
chunks = [content[i:i+500] for i in range(0, len(content), 500)]
|
201 |
+
thoughts = []
|
202 |
+
for chunk in chunks:
|
203 |
+
network.process_input(chunk)
|
204 |
+
thoughts.append(f"Processed chunk: {network.think()}")
|
205 |
+
|
206 |
+
image = network.visualize(zoom_level)
|
207 |
+
return "\n".join(thoughts), image
|
208 |
+
else:
|
209 |
+
return f"Could not retrieve content for topic: {topic}", None
|
210 |
+
|
211 |
+
def chat_with_ai(input_text):
|
212 |
+
nonlocal zoom_level
|
213 |
+
response = network.chat(input_text)
|
214 |
+
image = network.visualize(zoom_level)
|
215 |
+
return response, image
|
216 |
+
|
217 |
+
def self_conversation(num_cycles):
|
218 |
+
nonlocal zoom_level
|
219 |
+
thoughts = []
|
220 |
+
for _ in range(num_cycles):
|
221 |
+
thought = network.think()
|
222 |
+
thoughts.append(thought)
|
223 |
+
|
224 |
+
image = network.visualize(zoom_level)
|
225 |
+
|
226 |
+
time.sleep(0.1) # Add a small delay to make the process visible
|
227 |
+
|
228 |
+
yield "\n".join(thoughts), image
|
229 |
+
|
230 |
+
def update_zoom(zoom_factor):
|
231 |
+
nonlocal zoom_level
|
232 |
+
zoom_level *= zoom_factor
|
233 |
+
image = network.visualize(zoom_level)
|
234 |
+
return image
|
235 |
+
|
236 |
+
with gr.Blocks() as demo:
|
237 |
+
gr.Markdown("# Advanced Fractal AI with Visualization and Interaction")
|
238 |
+
|
239 |
+
with gr.Row():
|
240 |
+
num_cycles = gr.Number(label="Number of Cycles", value=1, precision=0)
|
241 |
+
cycle_button = gr.Button("Run Cycles")
|
242 |
+
|
243 |
+
output_text = gr.Textbox(label="AI Thoughts", lines=5)
|
244 |
+
fractal_viz = gr.Image(label="Fractal Visualization")
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
zoom_in = gr.Button("Zoom In")
|
248 |
+
zoom_out = gr.Button("Zoom Out")
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
save_name = gr.Textbox(label="Save filename:")
|
252 |
+
save_btn = gr.Button("Save Network State")
|
253 |
+
|
254 |
+
load_file = gr.File(label="Load Network State")
|
255 |
+
|
256 |
+
initial_nodes_slider = gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Initial Nodes")
|
257 |
+
recreate_btn = gr.Button("Recreate Network")
|
258 |
+
|
259 |
+
wiki_topic = gr.Textbox(label="Wikipedia Topic:")
|
260 |
+
wiki_btn = gr.Button("Train on Wikipedia")
|
261 |
+
|
262 |
+
chat_input = gr.Textbox(label="Chat with Fractal AI")
|
263 |
+
chat_output = gr.Textbox(label="Fractal AI Response", lines=3)
|
264 |
+
chat_button = gr.Button("Send")
|
265 |
+
|
266 |
+
self_convo_cycles = gr.Number(label="Self-Conversation Cycles", value=10, precision=0)
|
267 |
+
self_convo_button = gr.Button("Start Self-Conversation")
|
268 |
+
|
269 |
+
# Connect components
|
270 |
+
cycle_button.click(cycle_ai, inputs=[num_cycles], outputs=[output_text, fractal_viz])
|
271 |
+
save_btn.click(save_state, inputs=[save_name], outputs=[output_text])
|
272 |
+
load_file.change(load_state, inputs=[load_file], outputs=[output_text])
|
273 |
+
recreate_btn.click(recreate_network, inputs=[initial_nodes_slider], outputs=[output_text, fractal_viz])
|
274 |
+
wiki_btn.click(train_on_wikipedia, inputs=[wiki_topic], outputs=[output_text, fractal_viz])
|
275 |
+
chat_button.click(chat_with_ai, inputs=[chat_input], outputs=[chat_output, fractal_viz])
|
276 |
+
self_convo_button.click(self_conversation, inputs=[self_convo_cycles], outputs=[output_text, fractal_viz])
|
277 |
+
zoom_in.click(update_zoom, inputs=[gr.State(1.2)], outputs=[fractal_viz])
|
278 |
+
zoom_out.click(update_zoom, inputs=[gr.State(0.8)], outputs=[fractal_viz])
|
279 |
+
|
280 |
+
return demo
|
281 |
+
|
282 |
+
# Launch the Gradio interface
|
283 |
+
if __name__ == "__main__":
|
284 |
+
demo = gradio_interface()
|
285 |
+
demo.launch()
|
readme (3).md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fractal AI with Visualization and Interaction
|
2 |
+
|
3 |
+
## Description
|
4 |
+
This project implements an advanced Fractal AI system with dynamic growth, visualization, and interactive features. It combines concepts from fractal geometry, neural networks, and Hebbian learning to create a unique and evolving AI structure.
|
5 |
+
|
6 |
+
## Features
|
7 |
+
- Dynamic fractal network growth
|
8 |
+
- 3D visualization of the fractal AI structure
|
9 |
+
- Hebbian learning for connection weight updates
|
10 |
+
- Interactive chat functionality
|
11 |
+
- Wikipedia integration for training
|
12 |
+
- Self-conversation mode
|
13 |
+
- State saving and loading
|
14 |
+
- Zoom functionality for detailed exploration
|
15 |
+
|
16 |
+
## Installation
|
17 |
+
|
18 |
+
1. Clone this repository:
|
19 |
+
```
|
20 |
+
git clone https://github.com/yourusername/fractal-ai.git
|
21 |
+
cd fractal-ai
|
22 |
+
```
|
23 |
+
|
24 |
+
2. Install the required dependencies:
|
25 |
+
```
|
26 |
+
pip install -r requirements.txt
|
27 |
+
```
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
Run the main script:
|
32 |
+
```
|
33 |
+
python fractal_ai.py
|
34 |
+
```
|
35 |
+
|
36 |
+
This will launch a Gradio interface in your default web browser, where you can interact with the Fractal AI system.
|
37 |
+
|
38 |
+
## Interface Options
|
39 |
+
|
40 |
+
- **Run Cycles**: Execute a specified number of thinking cycles
|
41 |
+
- **Train on Wikipedia**: Input a topic to train the AI on Wikipedia content
|
42 |
+
- **Chat**: Engage in a conversation with the AI
|
43 |
+
- **Self-Conversation**: Let the AI converse with itself
|
44 |
+
- **Zoom**: Explore the fractal structure in detail
|
45 |
+
- **Save/Load State**: Preserve or restore the AI's state
|
46 |
+
|
47 |
+
## Contributors
|
48 |
+
- Antti Luode - Original concept and ideation
|
49 |
+
- ChatGPT - Assisted in code generation and problem-solving
|
50 |
+
- Claude (Anthropic) - Implemented core functionality and resolved issues
|
51 |
+
|
52 |
+
## Acknowledgements
|
53 |
+
Special thanks to Antti Luode for the innovative and ambitious idea behind this project. The collaboration between human creativity and AI assistance has made this unique project possible.
|
54 |
+
|
55 |
+
## License
|
56 |
+
This project is open-source and available under the MIT License.
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.5
|
2 |
+
matplotlib==3.5.2
|
3 |
+
gradio==3.23.0
|
4 |
+
networkx==2.8.4
|
5 |
+
requests==2.28.1
|
6 |
+
beautifulsoup4==4.11.1
|
7 |
+
pillow==9.3.0
|