Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from scipy.ndimage import gaussian_filter
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from time import sleep
|
6 |
+
|
7 |
+
class NeuralFieldExplorer:
|
8 |
+
def __init__(self, size=100, time_depth=50):
|
9 |
+
self.size = size
|
10 |
+
self.time_depth = time_depth
|
11 |
+
self.energy_flow_history = np.zeros((time_depth, size, size))
|
12 |
+
|
13 |
+
# Field parameters
|
14 |
+
self.u = np.zeros((size, size))
|
15 |
+
self.v = np.zeros((size, size))
|
16 |
+
self.phi = np.zeros((size, size))
|
17 |
+
|
18 |
+
# Initialize central disturbance
|
19 |
+
self.u[size//2, size//2] = 2.0
|
20 |
+
|
21 |
+
# Physics parameters
|
22 |
+
self.dt = 0.1
|
23 |
+
self.dx = 1.0
|
24 |
+
self.dy = 1.0
|
25 |
+
self.c = 1.0
|
26 |
+
self.alpha = 0.05
|
27 |
+
self.beta = 0.02
|
28 |
+
|
29 |
+
def update_fields(self):
|
30 |
+
laplacian = (
|
31 |
+
-4 * self.u +
|
32 |
+
np.roll(self.u, 1, axis=0) +
|
33 |
+
np.roll(self.u, -1, axis=0) +
|
34 |
+
np.roll(self.u, 1, axis=1) +
|
35 |
+
np.roll(self.u, -1, axis=1)
|
36 |
+
) / (self.dx * self.dy)
|
37 |
+
|
38 |
+
quantum_input = np.random.normal(0, 0.1, (self.size, self.size))
|
39 |
+
classical_input = np.zeros((self.size, self.size))
|
40 |
+
|
41 |
+
a = self.c**2 * laplacian - self.beta * self.v - self.alpha * (self.u**3) + quantum_input + classical_input
|
42 |
+
v_new = self.v + a * self.dt
|
43 |
+
u_new = self.u + v_new * self.dt
|
44 |
+
phi_new = self.phi + (v_new * self.dt)
|
45 |
+
|
46 |
+
self.u, self.v, self.phi = u_new, v_new, phi_new
|
47 |
+
|
48 |
+
def calculate_energy_flow(self):
|
49 |
+
grad_x = np.gradient(self.u, axis=0)
|
50 |
+
grad_y = np.gradient(self.u, axis=1)
|
51 |
+
energy_flow = np.sqrt(grad_x**2 + grad_y**2)
|
52 |
+
energy_flow = gaussian_filter(energy_flow, sigma=1)
|
53 |
+
return (energy_flow - energy_flow.min()) / (energy_flow.max() - energy_flow.min() + 1e-8)
|
54 |
+
|
55 |
+
def update_history(self, energy_flow):
|
56 |
+
self.energy_flow_history = np.roll(self.energy_flow_history, -1, axis=0)
|
57 |
+
self.energy_flow_history[-1] = energy_flow
|
58 |
+
|
59 |
+
def create_3d_visualization(self):
|
60 |
+
x, y = np.meshgrid(np.arange(self.size), np.arange(self.size))
|
61 |
+
|
62 |
+
# Create empty lists for our surface plots
|
63 |
+
surfaces = []
|
64 |
+
|
65 |
+
# Create a surface for each time slice
|
66 |
+
for i in range(0, self.time_depth, 2):
|
67 |
+
z = i * np.ones_like(x)
|
68 |
+
|
69 |
+
# Create surface with custom coloring
|
70 |
+
surfaces.append(
|
71 |
+
go.Surface(
|
72 |
+
x=x,
|
73 |
+
y=y,
|
74 |
+
z=z,
|
75 |
+
surfacecolor=self.energy_flow_history[i],
|
76 |
+
showscale=False,
|
77 |
+
opacity=0.3,
|
78 |
+
colorscale='Magma'
|
79 |
+
)
|
80 |
+
)
|
81 |
+
|
82 |
+
return surfaces
|
83 |
+
|
84 |
+
def main():
|
85 |
+
st.title("🧠 Neural Field Pattern Explorer")
|
86 |
+
st.write("Exploring the 3D structure of neural field patterns in real-time!")
|
87 |
+
|
88 |
+
# Initialize session state
|
89 |
+
if 'explorer' not in st.session_state:
|
90 |
+
st.session_state.explorer = NeuralFieldExplorer()
|
91 |
+
st.session_state.frame_count = 0
|
92 |
+
|
93 |
+
# Control panel
|
94 |
+
col1, col2, col3 = st.columns(3)
|
95 |
+
with col1:
|
96 |
+
running = st.checkbox('Run Simulation', value=True)
|
97 |
+
with col2:
|
98 |
+
speed = st.slider('Animation Speed', 1, 10, 5)
|
99 |
+
with col3:
|
100 |
+
transparency = st.slider('Layer Transparency', 0.1, 1.0, 0.3)
|
101 |
+
|
102 |
+
# Create placeholders for our visualizations
|
103 |
+
plot3d = st.empty()
|
104 |
+
plot2d = st.empty()
|
105 |
+
|
106 |
+
# Main simulation loop
|
107 |
+
while running:
|
108 |
+
# Update fields
|
109 |
+
st.session_state.explorer.update_fields()
|
110 |
+
energy_flow = st.session_state.explorer.calculate_energy_flow()
|
111 |
+
st.session_state.explorer.update_history(energy_flow)
|
112 |
+
|
113 |
+
# Create 3D visualization
|
114 |
+
surfaces = st.session_state.explorer.create_3d_visualization()
|
115 |
+
|
116 |
+
# Update 3D plot
|
117 |
+
fig3d = go.Figure(data=surfaces)
|
118 |
+
fig3d.update_layout(
|
119 |
+
title='3D Neural Field Patterns',
|
120 |
+
scene=dict(
|
121 |
+
xaxis_title='X',
|
122 |
+
yaxis_title='Y',
|
123 |
+
zaxis_title='Time',
|
124 |
+
camera=dict(
|
125 |
+
up=dict(x=0, y=0, z=1),
|
126 |
+
center=dict(x=0, y=0, z=0),
|
127 |
+
eye=dict(x=1.5, y=1.5, z=1.5)
|
128 |
+
)
|
129 |
+
),
|
130 |
+
width=800,
|
131 |
+
height=600
|
132 |
+
)
|
133 |
+
|
134 |
+
# Update 2D plot
|
135 |
+
fig2d = go.Figure(data=go.Heatmap(
|
136 |
+
z=energy_flow,
|
137 |
+
colorscale='Magma'
|
138 |
+
))
|
139 |
+
fig2d.update_layout(
|
140 |
+
title='Current Energy Flow',
|
141 |
+
width=400,
|
142 |
+
height=400
|
143 |
+
)
|
144 |
+
|
145 |
+
# Display plots
|
146 |
+
plot3d.plotly_chart(fig3d, use_container_width=True)
|
147 |
+
plot2d.plotly_chart(fig2d, use_container_width=True)
|
148 |
+
|
149 |
+
# Control animation speed
|
150 |
+
sleep(1.0 / speed)
|
151 |
+
|
152 |
+
st.session_state.frame_count += 1
|
153 |
+
|
154 |
+
# Break if checkbox is unchecked
|
155 |
+
if not running:
|
156 |
+
break
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
st.set_page_config(page_title="Neural Field Explorer", layout="wide")
|
160 |
+
main()
|