Aluode commited on
Commit
50813cc
·
verified ·
1 Parent(s): aaf6e79

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +160 -0
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from scipy.ndimage import gaussian_filter
4
+ import plotly.graph_objects as go
5
+ from time import sleep
6
+
7
+ class NeuralFieldExplorer:
8
+ def __init__(self, size=100, time_depth=50):
9
+ self.size = size
10
+ self.time_depth = time_depth
11
+ self.energy_flow_history = np.zeros((time_depth, size, size))
12
+
13
+ # Field parameters
14
+ self.u = np.zeros((size, size))
15
+ self.v = np.zeros((size, size))
16
+ self.phi = np.zeros((size, size))
17
+
18
+ # Initialize central disturbance
19
+ self.u[size//2, size//2] = 2.0
20
+
21
+ # Physics parameters
22
+ self.dt = 0.1
23
+ self.dx = 1.0
24
+ self.dy = 1.0
25
+ self.c = 1.0
26
+ self.alpha = 0.05
27
+ self.beta = 0.02
28
+
29
+ def update_fields(self):
30
+ laplacian = (
31
+ -4 * self.u +
32
+ np.roll(self.u, 1, axis=0) +
33
+ np.roll(self.u, -1, axis=0) +
34
+ np.roll(self.u, 1, axis=1) +
35
+ np.roll(self.u, -1, axis=1)
36
+ ) / (self.dx * self.dy)
37
+
38
+ quantum_input = np.random.normal(0, 0.1, (self.size, self.size))
39
+ classical_input = np.zeros((self.size, self.size))
40
+
41
+ a = self.c**2 * laplacian - self.beta * self.v - self.alpha * (self.u**3) + quantum_input + classical_input
42
+ v_new = self.v + a * self.dt
43
+ u_new = self.u + v_new * self.dt
44
+ phi_new = self.phi + (v_new * self.dt)
45
+
46
+ self.u, self.v, self.phi = u_new, v_new, phi_new
47
+
48
+ def calculate_energy_flow(self):
49
+ grad_x = np.gradient(self.u, axis=0)
50
+ grad_y = np.gradient(self.u, axis=1)
51
+ energy_flow = np.sqrt(grad_x**2 + grad_y**2)
52
+ energy_flow = gaussian_filter(energy_flow, sigma=1)
53
+ return (energy_flow - energy_flow.min()) / (energy_flow.max() - energy_flow.min() + 1e-8)
54
+
55
+ def update_history(self, energy_flow):
56
+ self.energy_flow_history = np.roll(self.energy_flow_history, -1, axis=0)
57
+ self.energy_flow_history[-1] = energy_flow
58
+
59
+ def create_3d_visualization(self):
60
+ x, y = np.meshgrid(np.arange(self.size), np.arange(self.size))
61
+
62
+ # Create empty lists for our surface plots
63
+ surfaces = []
64
+
65
+ # Create a surface for each time slice
66
+ for i in range(0, self.time_depth, 2):
67
+ z = i * np.ones_like(x)
68
+
69
+ # Create surface with custom coloring
70
+ surfaces.append(
71
+ go.Surface(
72
+ x=x,
73
+ y=y,
74
+ z=z,
75
+ surfacecolor=self.energy_flow_history[i],
76
+ showscale=False,
77
+ opacity=0.3,
78
+ colorscale='Magma'
79
+ )
80
+ )
81
+
82
+ return surfaces
83
+
84
+ def main():
85
+ st.title("🧠 Neural Field Pattern Explorer")
86
+ st.write("Exploring the 3D structure of neural field patterns in real-time!")
87
+
88
+ # Initialize session state
89
+ if 'explorer' not in st.session_state:
90
+ st.session_state.explorer = NeuralFieldExplorer()
91
+ st.session_state.frame_count = 0
92
+
93
+ # Control panel
94
+ col1, col2, col3 = st.columns(3)
95
+ with col1:
96
+ running = st.checkbox('Run Simulation', value=True)
97
+ with col2:
98
+ speed = st.slider('Animation Speed', 1, 10, 5)
99
+ with col3:
100
+ transparency = st.slider('Layer Transparency', 0.1, 1.0, 0.3)
101
+
102
+ # Create placeholders for our visualizations
103
+ plot3d = st.empty()
104
+ plot2d = st.empty()
105
+
106
+ # Main simulation loop
107
+ while running:
108
+ # Update fields
109
+ st.session_state.explorer.update_fields()
110
+ energy_flow = st.session_state.explorer.calculate_energy_flow()
111
+ st.session_state.explorer.update_history(energy_flow)
112
+
113
+ # Create 3D visualization
114
+ surfaces = st.session_state.explorer.create_3d_visualization()
115
+
116
+ # Update 3D plot
117
+ fig3d = go.Figure(data=surfaces)
118
+ fig3d.update_layout(
119
+ title='3D Neural Field Patterns',
120
+ scene=dict(
121
+ xaxis_title='X',
122
+ yaxis_title='Y',
123
+ zaxis_title='Time',
124
+ camera=dict(
125
+ up=dict(x=0, y=0, z=1),
126
+ center=dict(x=0, y=0, z=0),
127
+ eye=dict(x=1.5, y=1.5, z=1.5)
128
+ )
129
+ ),
130
+ width=800,
131
+ height=600
132
+ )
133
+
134
+ # Update 2D plot
135
+ fig2d = go.Figure(data=go.Heatmap(
136
+ z=energy_flow,
137
+ colorscale='Magma'
138
+ ))
139
+ fig2d.update_layout(
140
+ title='Current Energy Flow',
141
+ width=400,
142
+ height=400
143
+ )
144
+
145
+ # Display plots
146
+ plot3d.plotly_chart(fig3d, use_container_width=True)
147
+ plot2d.plotly_chart(fig2d, use_container_width=True)
148
+
149
+ # Control animation speed
150
+ sleep(1.0 / speed)
151
+
152
+ st.session_state.frame_count += 1
153
+
154
+ # Break if checkbox is unchecked
155
+ if not running:
156
+ break
157
+
158
+ if __name__ == "__main__":
159
+ st.set_page_config(page_title="Neural Field Explorer", layout="wide")
160
+ main()