AlvaroMros commited on
Commit
e4d0f20
·
1 Parent(s): 338c9b0

Add model outputs and update project metadata

Browse files

Added trained model files, evaluation reports, and result visualizations to the output directory. Updated .gitignore to allow tracking of output files. Enhanced README with project metadata for Gradio deployment.

.gitignore CHANGED
@@ -1,3 +1,2 @@
1
  *__pycache__/
2
- *output/
3
  example_event.html
 
1
  *__pycache__/
 
2
  example_event.html
README.md CHANGED
@@ -1,3 +1,13 @@
 
 
 
 
 
 
 
 
 
 
1
  # UFC Scraper & ML
2
 
3
  Scrape ALL fight and fighter data from [ufcstats.com](http://ufcstats.com) up to the latest event and save them in `.csv` format
 
1
+ ---
2
+ title: UFC Fight Predictor
3
+ emoji: 🥊
4
+ colorFrom: red
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: "4.28.3"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
  # UFC Scraper & ML
12
 
13
  Scrape ALL fight and fighter data from [ufcstats.com](http://ufcstats.com) up to the latest event and save them in `.csv` format
output/best_model_report.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- UFC Fight Predictor: Best Model Analysis ---
2
+
3
+ --- Data Division ---
4
+ The dataset was split chronologically into two sets:
5
+ - Training Set: Used to train the models. Contains 727 events.
6
+ - Test Set: Used to evaluate model performance. Contains 10 events.
7
+
8
+ --- Feature Explanation ---
9
+ Each fight is converted into a feature vector representing the difference between the two fighters.
10
+ Features include base stat differentials (elo, height, reach) and historical performance metrics
11
+ (e.g., difference in wins, opponent ELO, and KO percentages from the last 5 fights).
12
+
13
+ --- Performance Metrics ---
14
+ The models listed below were trained on the Training Set and evaluated against the Test Set.
15
+ 'Accuracy' represents the percentage of fights in the test set that the model predicted correctly.
16
+ Higher values for Accuracy, Balanced Accuracy, ROC AUC, and F1 Score are better.
17
+
18
+ --- Model Performance Ranking ---
19
+ Accuracy Balanced Accuracy ROC AUC F1 Score Time Taken
20
+ Model
21
+ ExtraTreesClassifier 0.92 0.92 0.92 0.92 3.50
22
+ XGBClassifier 0.90 0.90 0.90 0.90 0.47
23
+ LGBMClassifier 0.89 0.89 0.89 0.89 3.19
24
+ AdaBoostClassifier 0.89 0.89 0.89 0.89 0.61
25
+ NuSVC 0.89 0.89 0.89 0.89 21.76
26
+ RandomForestClassifier 0.89 0.89 0.89 0.89 3.60
27
+ RidgeClassifier 0.88 0.88 0.88 0.88 0.05
28
+ CalibratedClassifierCV 0.88 0.88 0.88 0.88 0.18
29
+ LogisticRegression 0.88 0.88 0.88 0.88 0.13
30
+ LinearDiscriminantAnalysis 0.88 0.88 0.88 0.88 0.19
31
+ BernoulliNB 0.88 0.88 0.88 0.88 0.05
32
+ SVC 0.88 0.88 0.88 0.88 10.24
33
+ RidgeClassifierCV 0.88 0.88 0.88 0.88 0.04
34
+ LinearSVC 0.88 0.88 0.88 0.88 0.12
35
+ SGDClassifier 0.87 0.87 0.87 0.87 0.08
36
+ BaggingClassifier 0.86 0.86 0.86 0.86 1.14
37
+ PassiveAggressiveClassifier 0.86 0.86 0.86 0.86 0.11
38
+ KNeighborsClassifier 0.86 0.86 0.86 0.86 0.11
39
+ GaussianNB 0.86 0.86 0.86 0.86 0.04
40
+ NearestCentroid 0.86 0.86 0.86 0.86 0.09
41
+ LabelSpreading 0.82 0.82 0.82 0.82 51.25
42
+ ExtraTreeClassifier 0.81 0.81 0.81 0.81 0.06
43
+ DecisionTreeClassifier 0.80 0.80 0.80 0.80 0.25
44
+ LabelPropagation 0.80 0.80 0.80 0.80 32.01
45
+ QuadraticDiscriminantAnalysis 0.64 0.64 0.64 0.64 0.04
46
+ Perceptron 0.62 0.62 0.62 0.58 0.06
47
+ DummyClassifier 0.50 0.50 0.50 0.33 0.04
output/model_accuracies.png ADDED

Git LFS Details

  • SHA256: 7ec0be8f44c44bb38d92a41fd989632e0a2391df4f2d579395c3e1ef1e00be79
  • Pointer size: 130 Bytes
  • Size of remote file: 46.9 kB
output/model_error_comparison.png ADDED

Git LFS Details

  • SHA256: 0c03cdc2a8b920ca308f4b0fea12083d48cd2646f0743aa62f98f266eda1c92e
  • Pointer size: 131 Bytes
  • Size of remote file: 372 kB
output/model_results.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ac3da79a015fe96d6a70000dea70be81cd626208bfdc05a79b2c7d444d68a59
3
+ size 222959
output/models/BernoulliNBModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48e363229ce42b62cc80eaa694e53906527f17faecd49fc952ec8b70753bec39
3
+ size 5338648
output/models/EloBaselineModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfdc684f791b598fbecfbfe9b14cca3b4d483b3d7368a16faecea31aace3be87
3
+ size 938419
output/models/LGBMModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e91f0d2d056c0a2d0d19866cac1a547498cf1c5d819e34b842880554befd30bc
3
+ size 6649369
output/models/LogisticRegressionModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0db74028309dac730252143b3df7fc115c145dfab7da1f1dc1b25f55c1c3f65a
3
+ size 5511435
output/models/RandomForestModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1dfa2fa6240d5979ebaf66aa933b0d5c10f0919cf14c56e65047cd89ebd5259
3
+ size 49556539
output/models/SVCModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063b4df8b8c95679fb861498247120466f125a54245abd6498acaf5fb4c73a93
3
+ size 7193785
output/models/XGBoostModel.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbbb33909efa675e5dc7f2860c0ae32a90d4721ff92175aa03728bfa793af979
3
+ size 6060855