Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
if len(message) < 1: | |
message = "write a quick sort algorithm in python." | |
messages = [ | |
{ 'role': 'user', 'content': message } | |
] | |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
outputs = model.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=50, top_p=top_p, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# @spaces.GPU | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# if len(message) < 1: | |
# message = "write a quick sort algorithm in python." | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/main/docs/gradio/chatinterface | |
""" | |
css = """ | |
#msg_input { | |
flex-grow: 7; | |
} | |
""" | |
demo = gr.ChatInterface( | |
fn=respond, | |
textbox=gr.Textbox(elem_id="msg_input", placeholder="write a quick sort algorithm in python."), | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
css=css, | |
) | |
if __name__ == "__main__": | |
demo.launch() |