AlyxTeam commited on
Commit
5e6b787
1 Parent(s): c5d6bc2

feat: 换成测试模型

Browse files
Files changed (2) hide show
  1. app.py +66 -24
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,11 +1,14 @@
1
  import spaces
2
  import gradio as gr
3
  from huggingface_hub import InferenceClient
 
 
 
4
 
5
- """
6
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
- """
8
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
10
  @spaces.GPU
11
  def respond(
@@ -16,35 +19,73 @@ def respond(
16
  temperature,
17
  top_p,
18
  ):
19
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
20
 
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
 
27
- messages.append({"role": "user", "content": message})
28
 
29
- response = ""
 
 
 
 
 
30
 
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
 
 
39
 
40
- response += token
41
- yield response
 
 
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
 
 
 
45
  """
 
46
  demo = gr.ChatInterface(
47
- respond,
 
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
@@ -57,6 +98,7 @@ demo = gr.ChatInterface(
57
  label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
60
  )
61
 
62
 
 
1
  import spaces
2
  import gradio as gr
3
  from huggingface_hub import InferenceClient
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ import torch
6
+ import subprocess
7
 
8
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
9
+
10
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
11
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
12
 
13
  @spaces.GPU
14
  def respond(
 
19
  temperature,
20
  top_p,
21
  ):
22
+ if len(message) < 1:
23
+ message = "write a quick sort algorithm in python."
24
+
25
+ messages = [
26
+ { 'role': 'user', 'content': message }
27
+ ]
28
 
29
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
 
 
 
 
30
 
31
+ outputs = model.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=50, top_p=top_p, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
32
 
33
+ return tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
34
+
35
+ """
36
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
37
+ """
38
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
39
 
40
+ # @spaces.GPU
41
+ # def respond(
42
+ # message,
43
+ # history: list[tuple[str, str]],
44
+ # system_message,
45
+ # max_tokens,
46
+ # temperature,
47
+ # top_p,
48
+ # ):
49
+ # messages = [{"role": "system", "content": system_message}]
50
 
51
+ # for val in history:
52
+ # if val[0]:
53
+ # messages.append({"role": "user", "content": val[0]})
54
+ # if val[1]:
55
+ # messages.append({"role": "assistant", "content": val[1]})
56
 
57
+ # if len(message) < 1:
58
+ # message = "write a quick sort algorithm in python."
59
+
60
+ # messages.append({"role": "user", "content": message})
61
+
62
+ # response = ""
63
+
64
+ # for message in client.chat_completion(
65
+ # messages,
66
+ # max_tokens=max_tokens,
67
+ # stream=True,
68
+ # temperature=temperature,
69
+ # top_p=top_p,
70
+ # ):
71
+ # token = message.choices[0].delta.content
72
+
73
+ # response += token
74
+ # yield response
75
+
76
+ """
77
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/main/docs/gradio/chatinterface
78
  """
79
+
80
+ css = """
81
+ #msg_input {
82
+ flex-grow: 7;
83
+ }
84
  """
85
+
86
  demo = gr.ChatInterface(
87
+ fn=respond,
88
+ textbox=gr.Textbox(elem_id="msg_input", placeholder="write a quick sort algorithm in python."),
89
  additional_inputs=[
90
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
91
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
 
98
  label="Top-p (nucleus sampling)",
99
  ),
100
  ],
101
+ css=css,
102
  )
103
 
104
 
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.22.2
 
 
1
+ huggingface_hub==0.22.2
2
+ transformers