import pandas as pd
from datasets import Dataset
from transformers import pipeline, GPT2Tokenizer
from sentence_transformers import SentenceTransformer, util

# Define paths and models
filename = "output_topic_details.txt"
retrieval_model_name = 'output/sentence-transformer-finetuned/'       #using a prefine-tuned model
gpt2_model_name = "gpt2"
csv_file_path = "train_dataset.csv"
output_csv_file_path = "updated_train_dataset.csv"
val_csv_file_path = "val_dataset.csv"
output_val_csv_file_path = "updated_val_csv.csv"

tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)

# Initialize models
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    gpt_model = pipeline("text-generation", model=gpt2_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text data from a file.

    Parameters:
    - filename (str): Path to the text file.

    Returns:
    - list[str]: A list of preprocessed text segments.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment based on a user query.

    Parameters:
    - user_query (str): The user's query.
    - segments (list[str]): List of text segments to search within.

    Returns:
    - str: The most relevant text segment.
    """
    try:
        query_embedding = retrieval_model.encode(user_query)
        segment_embeddings = retrieval_model.encode(segments)
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        best_idx = similarities.argmax()
        return segments[best_idx]
    except Exception as e:
        print(f"Error finding relevant segment: {e}")
        return ""

def generate_response(question):
    """
    Generate a response to a given question by finding a relevant text segment and
    using it to generate a more complete answer.

    Parameters:
    - question (str): The user's question.

    Returns:
    - str: Generated response.
    """
    relevant_segment = find_relevant_segment(question, segments)
    return generate_response_with_context(question, relevant_segment)

def generate_response_with_context(user_query, relevant_segment):
    """
    Generate a response based on a user query and a relevant segment.

    Parameters:
    - user_query (str): The user's query.
    - relevant_segment (str): A relevant fact or detail.

    Returns:
    - str: Formatted response incorporating the relevant segment.
    """
    try:
        prompt = f"Thank you for your question! Here is an additional fact about your topic: {relevant_segment}"
        max_tokens = len(tokenizer(prompt)['input_ids']) + 50
        response = gpt_model(prompt, max_length=max_tokens, temperature=0.25)[0]['generated_text']
        return clean_up_response(response, relevant_segment)
    except Exception as e:
        print(f"Error generating response: {e}")
        return ""

def clean_up_response(response, segment):
    """
    Clean up the generated response to ensure it is tidy and presentable.

    Parameters:
    - response (str): The initial response generated by the model.
    - segment (str): The segment used to generate the response.

    Returns:
    - str: A cleaned and formatted response.
    """
    sentences = response.split('.')
    cleaned_sentences = [sentence.strip() for sentence in sentences if sentence.strip() and sentence.strip() not in segment]
    cleaned_response = '. '.join(cleaned_sentences).strip()
    if cleaned_response and not cleaned_response.endswith((".", "!", "?")):
        cleaned_response += "."
    return cleaned_response

def process_dataset(csv_file_path, output_csv_file_path):
    """
    Process the dataset by generating responses and evaluating their similarities.

    Parameters:
    - csv_file_path (str): Path to the CSV file containing the dataset.
    - output_csv_file_path (str): Path where the updated dataset will be saved.

    Prints:
    - Path to the saved results and the average similarity score.
    """
    df = pd.read_csv(csv_file_path)
    dataset = Dataset.from_pandas(df)
    updated_dataset = add_model_answers(dataset)
    similarities = evaluate_similarity(updated_dataset)
    updated_dataset = updated_dataset.add_column("similarity", similarities)
    results_df = updated_dataset.to_pandas()
    results_df.to_csv(output_csv_file_path, index=False)
    average_similarity = sum(similarities) / len(similarities) if similarities else 0
    print(f"Results saved to {output_csv_file_path}")
    print(f"Average Similarity Score: {average_similarity:.3f}")

def add_model_answers(dataset):
    """
    Add generated answers to the dataset.

    Parameters:
    - dataset (datasets.Dataset): The Hugging Face dataset object.

    Returns:
    - datasets.Dataset: Updated dataset with added answers.
    """
    answers = [generate_response(q) for q in dataset['Question']]
    dataset = dataset.add_column("Answer", answers)
    return dataset

def evaluate_similarity(dataset):
    """
    Evaluate the similarity of generated answers against ground truth answers.

    Parameters:
    - dataset (datasets.Dataset): The dataset containing both answers and ground truths.

    Returns:
    - list[float]: List of similarity scores.
    """
    similarities = [util.pytorch_cos_sim(retrieval_model.encode(ans), retrieval_model.encode(gt))[0][0].item()
                    for ans, gt in zip(dataset['Answer'], dataset['GroundTruth'])]
    return similarities

# Process datasets
process_dataset(csv_file_path, output_csv_file_path)
process_dataset(val_csv_file_path, output_val_csv_file_path)