Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,80 @@
|
|
1 |
-
# import os
|
2 |
-
# import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
# from pydub import AudioSegment
|
4 |
# from groq import Groq
|
5 |
-
|
6 |
-
#
|
7 |
-
# ffmpeg_path = r"ffmpeg.exe"
|
8 |
-
# os.environ["PATH"] += os.pathsep + os.path.dirname(ffmpeg_path)
|
9 |
-
# AudioSegment.converter = ffmpeg_path
|
10 |
|
11 |
# # Groq API configuration
|
12 |
# groq_api_key = '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' # Replace with your actual API key
|
@@ -70,16 +138,10 @@
|
|
70 |
# except Exception as e:
|
71 |
# st.error(f"Error during transcription: {e}")
|
72 |
|
73 |
-
|
74 |
-
from pydub import AudioSegment
|
75 |
-
from groq import Groq
|
76 |
import os
|
77 |
import streamlit as st
|
78 |
-
|
79 |
-
|
80 |
-
groq_api_key = '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' # Replace with your actual API key
|
81 |
-
client = Groq(api_key=groq_api_key)
|
82 |
-
model = 'whisper-large-v3'
|
83 |
|
84 |
# Function to ensure the file is in a suitable format
|
85 |
def ensure_suitable_format(file_path):
|
@@ -98,7 +160,9 @@ def convert_audio_to_wav(input_path, output_path):
|
|
98 |
return output_path
|
99 |
|
100 |
# Function to transcribe audio using Groq
|
101 |
-
def audio_to_text(filepath):
|
|
|
|
|
102 |
with open(filepath, "rb") as file:
|
103 |
translation = client.audio.translations.create(
|
104 |
file=(filepath, file.read()),
|
@@ -110,10 +174,13 @@ def audio_to_text(filepath):
|
|
110 |
st.title("Audio-to-Text Transcription")
|
111 |
st.write("Upload an audio file to get the transcribed text.")
|
112 |
|
|
|
|
|
|
|
113 |
# File upload
|
114 |
uploaded_file = st.file_uploader("Upload your audio file", type=["flac", "mp3", "mp4", "mpeg", "mpga", "m4a", "ogg", "opus", "wav", "webm"])
|
115 |
|
116 |
-
if uploaded_file:
|
117 |
# Save the uploaded file locally
|
118 |
file_path = os.path.join("uploaded_audio", uploaded_file.name)
|
119 |
os.makedirs("uploaded_audio", exist_ok=True)
|
@@ -132,9 +199,10 @@ if uploaded_file:
|
|
132 |
# Transcribe audio
|
133 |
st.write("Processing transcription...")
|
134 |
try:
|
135 |
-
transcription = audio_to_text(converted_audio)
|
136 |
st.success("Transcription complete!")
|
137 |
st.text_area("Transcribed Text", transcription, height=200)
|
138 |
except Exception as e:
|
139 |
st.error(f"Error during transcription: {e}")
|
140 |
-
|
|
|
|
1 |
+
# # import os
|
2 |
+
# # import streamlit as st
|
3 |
+
# # from pydub import AudioSegment
|
4 |
+
# # from groq import Groq
|
5 |
+
|
6 |
+
# # # Set ffmpeg path
|
7 |
+
# # ffmpeg_path = r"ffmpeg.exe"
|
8 |
+
# # os.environ["PATH"] += os.pathsep + os.path.dirname(ffmpeg_path)
|
9 |
+
# # AudioSegment.converter = ffmpeg_path
|
10 |
+
|
11 |
+
# # # Groq API configuration
|
12 |
+
# # groq_api_key = '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' # Replace with your actual API key
|
13 |
+
# # client = Groq(api_key=groq_api_key)
|
14 |
+
# # model = 'whisper-large-v3'
|
15 |
+
|
16 |
+
# # # Function to ensure the file is in a suitable format
|
17 |
+
# # def ensure_suitable_format(file_path):
|
18 |
+
# # allowed_formats = ["flac", "mp3", "mp4", "mpeg", "mpga", "m4a", "ogg", "opus", "wav", "webm"]
|
19 |
+
# # file_extension = file_path.split('.')[-1].lower()
|
20 |
+
# # if file_extension not in allowed_formats:
|
21 |
+
# # new_file_path = f"{os.path.splitext(file_path)[0]}.wav"
|
22 |
+
# # os.rename(file_path, new_file_path)
|
23 |
+
# # return new_file_path
|
24 |
+
# # return file_path
|
25 |
+
|
26 |
+
# # # Function to convert audio to WAV
|
27 |
+
# # def convert_audio_to_wav(input_path, output_path):
|
28 |
+
# # audio = AudioSegment.from_file(input_path)
|
29 |
+
# # audio.export(output_path, format="wav")
|
30 |
+
# # return output_path
|
31 |
+
|
32 |
+
# # # Function to transcribe audio using Groq
|
33 |
+
# # def audio_to_text(filepath):
|
34 |
+
# # with open(filepath, "rb") as file:
|
35 |
+
# # translation = client.audio.translations.create(
|
36 |
+
# # file=(filepath, file.read()),
|
37 |
+
# # model=model,
|
38 |
+
# # )
|
39 |
+
# # return translation.text
|
40 |
+
|
41 |
+
# # # Streamlit App UI
|
42 |
+
# # st.title("Audio-to-Text Transcription")
|
43 |
+
# # st.write("Upload an audio file to get the transcribed text.")
|
44 |
+
|
45 |
+
# # # File upload
|
46 |
+
# # uploaded_file = st.file_uploader("Upload your audio file", type=["flac", "mp3", "mp4", "mpeg", "mpga", "m4a", "ogg", "opus", "wav", "webm"])
|
47 |
+
|
48 |
+
# # if uploaded_file:
|
49 |
+
# # # Save the uploaded file locally
|
50 |
+
# # file_path = os.path.join("uploaded_audio", uploaded_file.name)
|
51 |
+
# # os.makedirs("uploaded_audio", exist_ok=True)
|
52 |
+
# # with open(file_path, "wb") as f:
|
53 |
+
# # f.write(uploaded_file.getbuffer())
|
54 |
+
|
55 |
+
# # st.write(f"File uploaded: {uploaded_file.name}")
|
56 |
+
|
57 |
+
# # # Ensure file format is suitable
|
58 |
+
# # suitable_audio_path = ensure_suitable_format(file_path)
|
59 |
+
|
60 |
+
# # # Convert audio to WAV
|
61 |
+
# # wav_path = f"{os.path.splitext(suitable_audio_path)[0]}.wav"
|
62 |
+
# # converted_audio = convert_audio_to_wav(suitable_audio_path, wav_path)
|
63 |
+
|
64 |
+
# # # Transcribe audio
|
65 |
+
# # st.write("Processing transcription...")
|
66 |
+
# # try:
|
67 |
+
# # transcription = audio_to_text(converted_audio)
|
68 |
+
# # st.success("Transcription complete!")
|
69 |
+
# # st.text_area("Transcribed Text", transcription, height=200)
|
70 |
+
# # except Exception as e:
|
71 |
+
# # st.error(f"Error during transcription: {e}")
|
72 |
+
|
73 |
+
|
74 |
# from pydub import AudioSegment
|
75 |
# from groq import Groq
|
76 |
+
# import os
|
77 |
+
# import streamlit as st
|
|
|
|
|
|
|
78 |
|
79 |
# # Groq API configuration
|
80 |
# groq_api_key = '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' # Replace with your actual API key
|
|
|
138 |
# except Exception as e:
|
139 |
# st.error(f"Error during transcription: {e}")
|
140 |
|
|
|
|
|
|
|
141 |
import os
|
142 |
import streamlit as st
|
143 |
+
from pydub import AudioSegment
|
144 |
+
from groq import Groq
|
|
|
|
|
|
|
145 |
|
146 |
# Function to ensure the file is in a suitable format
|
147 |
def ensure_suitable_format(file_path):
|
|
|
160 |
return output_path
|
161 |
|
162 |
# Function to transcribe audio using Groq
|
163 |
+
def audio_to_text(filepath, groq_api_key):
|
164 |
+
client = Groq(api_key=groq_api_key)
|
165 |
+
model = 'whisper-large-v3'
|
166 |
with open(filepath, "rb") as file:
|
167 |
translation = client.audio.translations.create(
|
168 |
file=(filepath, file.read()),
|
|
|
174 |
st.title("Audio-to-Text Transcription")
|
175 |
st.write("Upload an audio file to get the transcribed text.")
|
176 |
|
177 |
+
# Input for API key
|
178 |
+
groq_api_key = st.text_input("Enter your Groq API Key", type="password")
|
179 |
+
|
180 |
# File upload
|
181 |
uploaded_file = st.file_uploader("Upload your audio file", type=["flac", "mp3", "mp4", "mpeg", "mpga", "m4a", "ogg", "opus", "wav", "webm"])
|
182 |
|
183 |
+
if groq_api_key and uploaded_file:
|
184 |
# Save the uploaded file locally
|
185 |
file_path = os.path.join("uploaded_audio", uploaded_file.name)
|
186 |
os.makedirs("uploaded_audio", exist_ok=True)
|
|
|
199 |
# Transcribe audio
|
200 |
st.write("Processing transcription...")
|
201 |
try:
|
202 |
+
transcription = audio_to_text(converted_audio, groq_api_key)
|
203 |
st.success("Transcription complete!")
|
204 |
st.text_area("Transcribed Text", transcription, height=200)
|
205 |
except Exception as e:
|
206 |
st.error(f"Error during transcription: {e}")
|
207 |
+
elif not groq_api_key:
|
208 |
+
st.warning("Please enter your Groq API Key to proceed.")
|