Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,517 Bytes
19da45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
from __future__ import annotations
from typing import Optional
import matplotlib
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from plyfile import PlyData, PlyElement
def signed_log1p_inverse(x):
"""
Computes the inverse of signed_log1p: x = sign(x) * (exp(abs(x)) - 1).
Args:
y (torch.Tensor): Input tensor (output of signed_log1p).
Returns:
torch.Tensor: Original tensor x.
"""
if isinstance(x, torch.Tensor):
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1)
elif isinstance(x, np.ndarray):
return np.sign(x) * (np.exp(np.abs(x)) - 1)
else:
raise TypeError("Input must be a torch.Tensor or numpy.ndarray")
def colorize_depth(depth, cmap="Spectral"):
min_d, max_d = (depth[depth > 0]).min(), (depth[depth > 0]).max()
depth = (max_d - depth) / (max_d - min_d)
cm = matplotlib.colormaps[cmap]
depth = depth.clip(0, 1)
depth = cm(depth, bytes=False)[..., 0:3]
return depth
def save_ply(pointmap, image, output_file, downsample=20, mask=None):
_, h, w, _ = pointmap.shape
image = image[:, :h, :w]
pointmap = pointmap[:, :h, :w]
points = pointmap.reshape(-1, 3) # (H*W, 3)
colors = image.reshape(-1, 3) # (H*W, 3)
if mask is not None:
points = points[mask.reshape(-1)]
colors = colors[mask.reshape(-1)]
indices = np.random.choice(
colors.shape[0], int(colors.shape[0] / downsample), replace=False
)
points = points[indices]
colors = colors[indices]
vertices = []
for p, c in zip(points, colors):
vertex = (p[0], p[1], p[2], int(c[0]), int(c[1]), int(c[2]))
vertices.append(vertex)
vertex_dtype = np.dtype(
[
("x", "f4"),
("y", "f4"),
("z", "f4"),
("red", "u1"),
("green", "u1"),
("blue", "u1"),
]
)
vertex_array = np.array(vertices, dtype=vertex_dtype)
ply_element = PlyElement.describe(vertex_array, "vertex")
PlyData([ply_element], text=True).write(output_file)
def fov_to_focal(fovx, fovy, h, w):
focal_x = w * 0.5 / np.tan(fovx)
focal_y = h * 0.5 / np.tan(fovy)
focal = (focal_x + focal_y) / 2
return focal
def get_rays(pose, h, w, focal=None, fovx=None, fovy=None):
import torch.nn.functional as F
pose = torch.from_numpy(pose).float()
x, y = torch.meshgrid(
torch.arange(w),
torch.arange(h),
indexing="xy",
)
x = x.flatten().unsqueeze(0).repeat(pose.shape[0], 1)
y = y.flatten().unsqueeze(0).repeat(pose.shape[0], 1)
cx = w * 0.5
cy = h * 0.5
intrinsics, focal = get_intrinsics(pose.shape[0], h, w, fovx, fovy, focal)
focal = torch.from_numpy(focal).float()
camera_dirs = F.pad(
torch.stack(
[
(x - cx + 0.5) / focal.unsqueeze(-1),
(y - cy + 0.5) / focal.unsqueeze(-1),
],
dim=-1,
),
(0, 1),
value=1.0,
) # [t, hw, 3]
pose = pose.to(dtype=camera_dirs.dtype)
rays_d = camera_dirs @ pose[:, :3, :3].transpose(1, 2) # [t, hw, 3]
rays_o = pose[:, :3, 3].unsqueeze(1).expand_as(rays_d) # [hw, 3]
rays_o = rays_o.view(pose.shape[0], h, w, 3)
rays_d = rays_d.view(pose.shape[0], h, w, 3)
return rays_o.float().numpy(), rays_d.float().numpy(), intrinsics
def get_intrinsics(batch_size, h, w, fovx=None, fovy=None, focal=None):
if focal is None:
focal_x = w * 0.5 / np.tan(fovx)
focal_y = h * 0.5 / np.tan(fovy)
focal = (focal_x + focal_y) / 2
cx = w * 0.5
cy = h * 0.5
intrinsics = np.zeros((batch_size, 3, 3))
intrinsics[:, 0, 0] = focal
intrinsics[:, 1, 1] = focal
intrinsics[:, 0, 2] = cx
intrinsics[:, 1, 2] = cy
intrinsics[:, 2, 2] = 1.0
return intrinsics, focal
def save_pointmap(
rgb,
disparity,
raymap,
save_file,
vae_downsample_scale=8,
camera_pose=None,
ray_o_scale_inv=1.0,
max_depth=1e2,
save_full_pcd_videos=False,
smooth_camera=False,
smooth_method="kalman", # or simple
**kwargs,
):
"""
Args:
rgb (numpy.ndarray): Shape of (t, h, w, 3), range [0, 1]
disparity (numpy.ndarray): Shape of (t, h, w), range [0, 1]
raymap (numpy.ndarray): Shape of (t, 6, h // 8, w // 8)
ray_o_scale_inv (float, optional): A `ray_o` scale constant. Defaults to 10.
"""
rgb = np.clip(rgb, 0, 1) * 255
pointmap_dict = postprocess_pointmap(
disparity,
raymap,
vae_downsample_scale,
camera_pose,
ray_o_scale_inv=ray_o_scale_inv,
smooth_camera=smooth_camera,
smooth_method=smooth_method,
**kwargs,
)
save_ply(
pointmap_dict["pointmap"],
rgb,
save_file,
mask=(pointmap_dict["depth"] < max_depth),
)
if save_full_pcd_videos:
pcd_dict = {
"points": pointmap_dict["pointmap"],
"colors": rgb,
"intrinsics": pointmap_dict["intrinsics"],
"poses": pointmap_dict["camera_pose"],
"depths": pointmap_dict["depth"],
}
np.save(save_file.replace(".ply", "_pcd.npy"), pcd_dict)
return pointmap_dict
def raymap_to_poses(
raymap, camera_pose=None, ray_o_scale_inv=1.0, return_intrinsics=True
):
ts = raymap.shape[0]
if (not return_intrinsics) and (camera_pose is not None):
return camera_pose, None, None
raymap[:, 3:] = signed_log1p_inverse(raymap[:, 3:])
# Extract ray origins and directions
ray_o = (
rearrange(raymap[:, 3:], "t c h w -> t h w c") * ray_o_scale_inv
) # [T, H, W, C]
ray_d = rearrange(raymap[:, :3], "t c h w -> t h w c") # [T, H, W, C]
# Compute orientation and directions
orient = ray_o.reshape(ts, -1, 3).mean(axis=1) # T, 3
image_orient = (ray_o + ray_d).reshape(ts, -1, 3).mean(axis=1) # T, 3
Focal = np.linalg.norm(image_orient - orient, axis=-1) # T,
Z_Dir = image_orient - orient # T, 3
# Compute the width (W) and field of view (FoV_x)
W_Left = ray_d[:, :, :1, :].reshape(ts, -1, 3).mean(axis=1)
W_Right = ray_d[:, :, -1:, :].reshape(ts, -1, 3).mean(axis=1)
W = W_Right - W_Left
W_real = (
np.linalg.norm(np.cross(W, Z_Dir), axis=-1)
/ (raymap.shape[-1] - 1)
* raymap.shape[-1]
)
Fov_x = np.arctan(W_real / (2 * Focal))
# Compute the height (H) and field of view (FoV_y)
H_Up = ray_d[:, :1, :, :].reshape(ts, -1, 3).mean(axis=1)
H_Down = ray_d[:, -1:, :, :].reshape(ts, -1, 3).mean(axis=1)
H = H_Up - H_Down
H_real = (
np.linalg.norm(np.cross(H, Z_Dir), axis=-1)
/ (raymap.shape[-2] - 1)
* raymap.shape[-2]
)
Fov_y = np.arctan(H_real / (2 * Focal))
# Compute X, Y, and Z directions for the camera
X_Dir = W_Right - W_Left
Y_Dir = np.cross(Z_Dir, X_Dir)
X_Dir = np.cross(Y_Dir, Z_Dir)
X_Dir /= np.linalg.norm(X_Dir, axis=-1, keepdims=True)
Y_Dir /= np.linalg.norm(Y_Dir, axis=-1, keepdims=True)
Z_Dir /= np.linalg.norm(Z_Dir, axis=-1, keepdims=True)
# Create the camera-to-world (camera_pose) transformation matrix
if camera_pose is None:
camera_pose = np.zeros((ts, 4, 4))
camera_pose[:, :3, 0] = X_Dir
camera_pose[:, :3, 1] = Y_Dir
camera_pose[:, :3, 2] = Z_Dir
camera_pose[:, :3, 3] = orient
camera_pose[:, 3, 3] = 1.0
return camera_pose, Fov_x, Fov_y
def postprocess_pointmap(
disparity,
raymap,
vae_downsample_scale=8,
camera_pose=None,
focal=None,
ray_o_scale_inv=1.0,
smooth_camera=False,
smooth_method="simple",
**kwargs,
):
"""
Args:
disparity (numpy.ndarray): Shape of (t, h, w), range [0, 1]
raymap (numpy.ndarray): Shape of (t, 6, h // 8, w // 8)
ray_o_scale_inv (float, optional): A `ray_o` scale constant. Defaults to 10.
"""
depth = np.clip(1.0 / np.clip(disparity, 1e-3, 1), 0, 1e8)
camera_pose, fov_x, fov_y = raymap_to_poses(
raymap,
camera_pose=camera_pose,
ray_o_scale_inv=ray_o_scale_inv,
return_intrinsics=(focal is not None),
)
if focal is None:
focal = fov_to_focal(
fov_x,
fov_y,
int(raymap.shape[2] * vae_downsample_scale),
int(raymap.shape[3] * vae_downsample_scale),
)
if smooth_camera:
# Check if sequence is static
is_static, trans_diff, rot_diff = detect_static_sequence(camera_pose)
if is_static:
print(
f"Detected static/near-static sequence (trans_diff={trans_diff:.6f}, rot_diff={rot_diff:.6f})"
)
# Apply stronger smoothing for static sequences
camera_pose = adaptive_pose_smoothing(camera_pose, trans_diff, rot_diff)
else:
if smooth_method == "simple":
camera_pose = smooth_poses(
camera_pose, window_size=5, method="gaussian"
)
elif smooth_method == "kalman":
camera_pose = smooth_trajectory(camera_pose, window_size=5)
ray_o, ray_d, intrinsics = get_rays(
camera_pose,
int(raymap.shape[2] * vae_downsample_scale),
int(raymap.shape[3] * vae_downsample_scale),
focal,
)
pointmap = depth[..., None] * ray_d + ray_o
return {
"pointmap": pointmap,
"camera_pose": camera_pose,
"intrinsics": intrinsics,
"ray_o": ray_o,
"ray_d": ray_d,
"depth": depth,
}
def detect_static_sequence(poses, threshold=0.01):
"""Detect if the camera sequence is static based on pose differences."""
translations = poses[:, :3, 3]
rotations = poses[:, :3, :3]
# Compute translation differences
trans_diff = np.linalg.norm(translations[1:] - translations[:-1], axis=1).mean()
# Compute rotation differences (using matrix frobenius norm)
rot_diff = np.linalg.norm(rotations[1:] - rotations[:-1], axis=(1, 2)).mean()
return trans_diff < threshold and rot_diff < threshold, trans_diff, rot_diff
def adaptive_pose_smoothing(poses, trans_diff, rot_diff, base_window=5):
"""Apply adaptive smoothing based on motion magnitude."""
# Increase window size for low motion sequences
motion_magnitude = trans_diff + rot_diff
adaptive_window = min(
41, max(base_window, int(base_window * (0.1 / max(motion_magnitude, 1e-6))))
)
# Apply stronger smoothing for low motion
poses_smooth = smooth_poses(poses, window_size=adaptive_window, method="gaussian")
return poses_smooth
def get_pixel(H, W):
# get 2D pixels (u, v) for image_a in cam_a pixel space
u_a, v_a = np.meshgrid(np.arange(W), np.arange(H))
# u_a = np.flip(u_a, axis=1)
# v_a = np.flip(v_a, axis=0)
pixels_a = np.stack(
[u_a.flatten() + 0.5, v_a.flatten() + 0.5, np.ones_like(u_a.flatten())], axis=0
)
return pixels_a
def project(depth, intrinsic, pose):
H, W = depth.shape
pixel = get_pixel(H, W).astype(np.float32)
points = (np.linalg.inv(intrinsic) @ pixel) * depth.reshape(-1)
points = pose[:3, :4] @ np.concatenate(
[points, np.ones((1, points.shape[1]))], axis=0
)
points = points.T.reshape(H, W, 3)
return points
def depth_edge(
depth: torch.Tensor,
atol: float = None,
rtol: float = None,
kernel_size: int = 3,
mask: Optional[torch.Tensor] = None,
) -> torch.BoolTensor:
"""
Compute the edge mask of a depth map. The edge is defined as the pixels whose neighbors have a large difference in depth.
Args:
depth (torch.Tensor): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (torch.Tensor): shape (..., height, width) of dtype torch.bool
"""
is_numpy = isinstance(depth, np.ndarray)
if is_numpy:
depth = torch.from_numpy(depth)
if isinstance(mask, np.ndarray):
mask = torch.from_numpy(mask)
shape = depth.shape
depth = depth.reshape(-1, 1, *shape[-2:])
if mask is not None:
mask = mask.reshape(-1, 1, *shape[-2:])
if mask is None:
diff = F.max_pool2d(
depth, kernel_size, stride=1, padding=kernel_size // 2
) + F.max_pool2d(-depth, kernel_size, stride=1, padding=kernel_size // 2)
else:
diff = F.max_pool2d(
torch.where(mask, depth, -torch.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
) + F.max_pool2d(
torch.where(mask, -depth, -torch.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
)
edge = torch.zeros_like(depth, dtype=torch.bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= (diff / depth).nan_to_num_() > rtol
edge = edge.reshape(*shape)
if is_numpy:
return edge.numpy()
return edge
@torch.jit.script
def align_rigid(
p,
q,
weights,
):
"""Compute a rigid transformation that, when applied to p, minimizes the weighted
squared distance between transformed points in p and points in q. See "Least-Squares
Rigid Motion Using SVD" by Olga Sorkine-Hornung and Michael Rabinovich for more
details (https://igl.ethz.ch/projects/ARAP/svd_rot.pdf).
"""
device = p.device
dtype = p.dtype
batch, _, _ = p.shape
# 1. Compute the centroids of both point sets.
weights_normalized = weights / (weights.sum(dim=-1, keepdim=True) + 1e-8)
p_centroid = (weights_normalized[..., None] * p).sum(dim=-2)
q_centroid = (weights_normalized[..., None] * q).sum(dim=-2)
# 2. Compute the centered vectors.
p_centered = p - p_centroid[..., None, :]
q_centered = q - q_centroid[..., None, :]
# 3. Compute the 3x3 covariance matrix.
covariance = (q_centered * weights[..., None]).transpose(-1, -2) @ p_centered
# 4. Compute the singular value decomposition and then the rotation.
u, _, vt = torch.linalg.svd(covariance)
s = torch.eye(3, dtype=dtype, device=device)
s = s.expand((batch, 3, 3)).contiguous()
s[..., 2, 2] = (u.det() * vt.det()).sign()
rotation = u @ s @ vt
# 5. Compute the optimal scale
scale = (
(torch.einsum("b i j, b k j -> b k i", rotation, p_centered) * q_centered).sum(
-1
)
* weights
).sum(-1) / ((p_centered**2).sum(-1) * weights).sum(-1)
# scale = (torch.einsum("b i j, b k j -> b k i", rotation, p_centered) * q_centered).sum([-1, -2]) / (p_centered**2).sum([-1, -2])
# 6. Compute the optimal translation.
translation = q_centroid - torch.einsum(
"b i j, b j -> b i", rotation, p_centroid * scale[:, None]
)
return rotation, translation, scale
def align_camera_extrinsics(
cameras_src: torch.Tensor, # Bx3x4 tensor representing [R | t]
cameras_tgt: torch.Tensor, # Bx3x4 tensor representing [R | t]
estimate_scale: bool = True,
eps: float = 1e-9,
):
"""
Align the source camera extrinsics to the target camera extrinsics.
NOTE Assume OPENCV convention
Args:
cameras_src (torch.Tensor): Bx3x4 tensor representing [R | t] for source cameras.
cameras_tgt (torch.Tensor): Bx3x4 tensor representing [R | t] for target cameras.
estimate_scale (bool, optional): Whether to estimate the scale factor. Default is True.
eps (float, optional): Small value to avoid division by zero. Default is 1e-9.
Returns:
align_t_R (torch.Tensor): 1x3x3 rotation matrix for alignment.
align_t_T (torch.Tensor): 1x3 translation vector for alignment.
align_t_s (float): Scaling factor for alignment.
"""
R_src = cameras_src[:, :, :3] # Extracting the rotation matrices from [R | t]
R_tgt = cameras_tgt[:, :, :3] # Extracting the rotation matrices from [R | t]
RRcov = torch.bmm(R_tgt.transpose(2, 1), R_src).mean(0)
U, _, V = torch.svd(RRcov)
align_t_R = V @ U.t()
T_src = cameras_src[:, :, 3] # Extracting the translation vectors from [R | t]
T_tgt = cameras_tgt[:, :, 3] # Extracting the translation vectors from [R | t]
A = torch.bmm(T_src[:, None], R_src)[:, 0]
B = torch.bmm(T_tgt[:, None], R_src)[:, 0]
Amu = A.mean(0, keepdim=True)
Bmu = B.mean(0, keepdim=True)
if estimate_scale and A.shape[0] > 1:
# get the scaling component by matching covariances
# of centered A and centered B
Ac = A - Amu
Bc = B - Bmu
align_t_s = (Ac * Bc).mean() / (Ac**2).mean().clamp(eps)
else:
# set the scale to identity
align_t_s = 1.0
# get the translation as the difference between the means of A and B
align_t_T = Bmu - align_t_s * Amu
align_t_R = align_t_R[None]
return align_t_R, align_t_T, align_t_s
def apply_transformation(
cameras_src: torch.Tensor, # Bx3x4 tensor representing [R | t]
align_t_R: torch.Tensor, # 1x3x3 rotation matrix
align_t_T: torch.Tensor, # 1x3 translation vector
align_t_s: float, # Scaling factor
return_extri: bool = True,
) -> torch.Tensor:
"""
Align and transform the source cameras using the provided rotation, translation, and scaling factors.
NOTE Assume OPENCV convention
Args:
cameras_src (torch.Tensor): Bx3x4 tensor representing [R | t] for source cameras.
align_t_R (torch.Tensor): 1x3x3 rotation matrix for alignment.
align_t_T (torch.Tensor): 1x3 translation vector for alignment.
align_t_s (float): Scaling factor for alignment.
Returns:
aligned_R (torch.Tensor): Bx3x3 tensor representing the aligned rotation matrices.
aligned_T (torch.Tensor): Bx3 tensor representing the aligned translation vectors.
"""
R_src = cameras_src[:, :, :3]
T_src = cameras_src[:, :, 3]
aligned_R = torch.bmm(R_src, align_t_R.expand(R_src.shape[0], 3, 3))
# Apply the translation alignment to the source translations
align_t_T_expanded = align_t_T[..., None].repeat(R_src.shape[0], 1, 1)
transformed_T = torch.bmm(R_src, align_t_T_expanded)[..., 0]
aligned_T = transformed_T + T_src * align_t_s
if return_extri:
extri = torch.cat([aligned_R, aligned_T.unsqueeze(-1)], dim=-1)
return extri
return aligned_R, aligned_T
def slerp(q1, q2, t):
"""Spherical Linear Interpolation between quaternions.
Args:
q1: (4,) first quaternion
q2: (4,) second quaternion
t: float between 0 and 1
Returns:
(4,) interpolated quaternion
"""
# Compute the cosine of the angle between the two vectors
dot = np.sum(q1 * q2)
# If the dot product is negative, slerp won't take the shorter path
# Fix by negating one of the input quaternions
if dot < 0.0:
q2 = -q2
dot = -dot
# Threshold for using linear interpolation instead of spherical
DOT_THRESHOLD = 0.9995
if dot > DOT_THRESHOLD:
# If the inputs are too close for comfort, linearly interpolate
# and normalize the result
result = q1 + t * (q2 - q1)
return result / np.linalg.norm(result)
# Compute the angle between the quaternions
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
# Compute interpolation factors
theta = theta_0 * t
sin_theta = np.sin(theta)
s0 = np.cos(theta) - dot * sin_theta / sin_theta_0
s1 = sin_theta / sin_theta_0
return (s0 * q1) + (s1 * q2)
def interpolate_poses(pose1, pose2, weight):
"""Interpolate between two camera poses with weight.
Args:
pose1: (4, 4) first camera pose
pose2: (4, 4) second camera pose
weight: float between 0 and 1, weight for pose1 (1-weight for pose2)
Returns:
(4, 4) interpolated pose
"""
from scipy.spatial.transform import Rotation as R
# Extract rotations and translations
R1 = R.from_matrix(pose1[:3, :3])
R2 = R.from_matrix(pose2[:3, :3])
t1 = pose1[:3, 3]
t2 = pose2[:3, 3]
# Get quaternions
q1 = R1.as_quat()
q2 = R2.as_quat()
# Interpolate rotation using our slerp implementation
q_interp = slerp(q1, q2, 1 - weight) # 1-weight because weight is for pose1
R_interp = R.from_quat(q_interp)
# Linear interpolation for translation
t_interp = weight * t1 + (1 - weight) * t2
# Construct interpolated pose
pose_interp = np.eye(4)
pose_interp[:3, :3] = R_interp.as_matrix()
pose_interp[:3, 3] = t_interp
return pose_interp
def smooth_poses(poses, window_size=5, method="gaussian"):
"""Smooth camera poses temporally.
Args:
poses: (N, 4, 4) camera poses
window_size: int, must be odd number
method: str, 'gaussian' or 'savgol' or 'ma'
Returns:
(N, 4, 4) smoothed poses
"""
from scipy.ndimage import gaussian_filter1d
from scipy.signal import savgol_filter
from scipy.spatial.transform import Rotation as R
assert window_size % 2 == 1, "window_size must be odd"
N = poses.shape[0]
smoothed = np.zeros_like(poses)
# Extract translations and quaternions
translations = poses[:, :3, 3]
rotations = R.from_matrix(poses[:, :3, :3])
quats = rotations.as_quat() # (N, 4)
# Ensure consistent quaternion signs to prevent interpolation artifacts
for i in range(1, N):
if np.dot(quats[i], quats[i - 1]) < 0:
quats[i] = -quats[i]
# Smooth translations
if method == "gaussian":
sigma = window_size / 6.0 # approximately 99.7% of the weight within the window
smoothed_trans = gaussian_filter1d(translations, sigma, axis=0, mode="nearest")
smoothed_quats = gaussian_filter1d(quats, sigma, axis=0, mode="nearest")
elif method == "savgol":
# Savitzky-Golay filter: polynomial fitting
poly_order = min(window_size - 1, 3)
smoothed_trans = savgol_filter(
translations, window_size, poly_order, axis=0, mode="nearest"
)
smoothed_quats = savgol_filter(
quats, window_size, poly_order, axis=0, mode="nearest"
)
elif method == "ma":
# Simple moving average
kernel = np.ones(window_size) / window_size
smoothed_trans = np.array(
[np.convolve(translations[:, i], kernel, mode="same") for i in range(3)]
).T
smoothed_quats = np.array(
[np.convolve(quats[:, i], kernel, mode="same") for i in range(4)]
).T
# Normalize quaternions
smoothed_quats /= np.linalg.norm(smoothed_quats, axis=1, keepdims=True)
# Reconstruct poses
smoothed_rots = R.from_quat(smoothed_quats).as_matrix()
for i in range(N):
smoothed[i] = np.eye(4)
smoothed[i, :3, :3] = smoothed_rots[i]
smoothed[i, :3, 3] = smoothed_trans[i]
return smoothed
def smooth_trajectory(poses, window_size=5):
"""Smooth camera trajectory using Kalman filter.
Args:
poses: (N, 4, 4) camera poses
window_size: int, window size for initial smoothing
Returns:
(N, 4, 4) smoothed poses
"""
from filterpy.kalman import KalmanFilter
from scipy.spatial.transform import Rotation as R
N = poses.shape[0]
# Initialize Kalman filter for position and velocity
kf = KalmanFilter(dim_x=6, dim_z=3) # 3D position and velocity
dt = 1.0 # assume uniform time steps
# State transition matrix
kf.F = np.array(
[
[1, 0, 0, dt, 0, 0],
[0, 1, 0, 0, dt, 0],
[0, 0, 1, 0, 0, dt],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
]
)
# Measurement matrix
kf.H = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0]])
# Measurement noise
kf.R *= 0.1
# Process noise
kf.Q *= 0.1
# Initial state uncertainty
kf.P *= 1.0
# Extract translations and rotations
translations = poses[:, :3, 3]
rotations = R.from_matrix(poses[:, :3, :3])
quats = rotations.as_quat()
# First pass: simple smoothing for initial estimates
smoothed = smooth_poses(poses, window_size, method="gaussian")
smooth_trans = smoothed[:, :3, 3]
# Second pass: Kalman filter for trajectory
filtered_trans = np.zeros_like(translations)
kf.x = np.zeros(6)
kf.x[:3] = smooth_trans[0]
filtered_trans[0] = smooth_trans[0]
# Forward pass
for i in range(1, N):
kf.predict()
kf.update(smooth_trans[i])
filtered_trans[i] = kf.x[:3]
# Backward smoothing for rotations using SLERP
window_half = window_size // 2
smoothed_quats = np.zeros_like(quats)
for i in range(N):
start_idx = max(0, i - window_half)
end_idx = min(N, i + window_half + 1)
weights = np.exp(
-0.5 * ((np.arange(start_idx, end_idx) - i) / (window_half / 2)) ** 2
)
weights /= weights.sum()
# Weighted average of nearby quaternions
avg_quat = np.zeros(4)
for j, w in zip(range(start_idx, end_idx), weights):
if np.dot(quats[j], quats[i]) < 0:
avg_quat += w * -quats[j]
else:
avg_quat += w * quats[j]
smoothed_quats[i] = avg_quat / np.linalg.norm(avg_quat)
# Reconstruct final smoothed poses
final_smoothed = np.zeros_like(poses)
smoothed_rots = R.from_quat(smoothed_quats).as_matrix()
for i in range(N):
final_smoothed[i] = np.eye(4)
final_smoothed[i, :3, :3] = smoothed_rots[i]
final_smoothed[i, :3, 3] = filtered_trans[i]
return final_smoothed
def compute_scale(prediction, target, mask):
if isinstance(prediction, np.ndarray):
prediction = torch.from_numpy(prediction).float()
if isinstance(target, np.ndarray):
target = torch.from_numpy(target).float()
if isinstance(mask, np.ndarray):
mask = torch.from_numpy(mask).bool()
numerator = torch.sum(mask * prediction * target, (1, 2))
denominator = torch.sum(mask * prediction * prediction, (1, 2))
scale = torch.zeros_like(numerator)
valid = (denominator != 0).nonzero()
scale[valid] = numerator[valid] / denominator[valid]
return scale.item()
|