File size: 8,373 Bytes
19da45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Adapted from https://github.com/facebookresearch/vggt/blob/main/visual_util.py


import matplotlib
import numpy as np
import trimesh
from scipy.spatial.transform import Rotation

from aether.utils.postprocess_utils import depth_edge


def predictions_to_glb(
    predictions,
    filter_by_frames="all",
    show_cam=True,
    max_depth=100.0,
    rtol=0.03,
    frame_rel_idx: float = 0.0,
) -> trimesh.Scene:
    """
    Converts predictions to a 3D scene represented as a GLB file.

    Args:
        predictions (dict): Dictionary containing model predictions with keys:
            - world_points: 3D point coordinates (S, H, W, 3)
            - images: Input images (S, H, W, 3)
            - depths: Depths (S, H, W)
            - camera poses: Camera poses (S, 4, 4)
        filter_by_frames (str): Frame filter specification (default: "all")
        show_cam (bool): Include camera visualization (default: True)
        max_depth (float): Maximum depth value (default: 100.0)
        rtol (float): Relative tolerance for depth edge detection (default: 0.2)
        frame_rel_idx (float): Relative index of the frame to visualize (default: 0.0)
    Returns:
        trimesh.Scene: Processed 3D scene containing point cloud and cameras

    Raises:
        ValueError: If input predictions structure is invalid
    """
    if not isinstance(predictions, dict):
        raise ValueError("predictions must be a dictionary")

    selected_frame_idx = None
    if filter_by_frames != "all" and filter_by_frames != "All":
        try:
            # Extract the index part before the colon
            selected_frame_idx = int(filter_by_frames.split(":")[0])
        except (ValueError, IndexError):
            pass

    pred_world_points = predictions["world_points"]

    # Get images from predictions
    images = predictions["images"]
    # Use extrinsic matrices instead of pred_extrinsic_list
    camera_poses = predictions["camera_poses"]

    if selected_frame_idx is not None:
        pred_world_points = pred_world_points[selected_frame_idx][None]
        images = images[selected_frame_idx][None]
        camera_poses = camera_poses[selected_frame_idx][None]

    vertices_3d = pred_world_points.reshape(-1, 3)
    # Handle different image formats - check if images need transposing
    if images.ndim == 4 and images.shape[1] == 3:  # NCHW format
        colors_rgb = np.transpose(images, (0, 2, 3, 1))
    else:  # Assume already in NHWC format
        colors_rgb = images
    colors_rgb = (colors_rgb.reshape(-1, 3) * 255).astype(np.uint8)

    depths = predictions["depths"]
    masks = depths < max_depth
    edge = ~depth_edge(depths, rtol=rtol, mask=masks)
    masks = (masks & edge).reshape(-1)
    vertices_3d = vertices_3d[masks]
    colors_rgb = colors_rgb[masks]

    if vertices_3d is None or np.asarray(vertices_3d).size == 0:
        vertices_3d = np.array([[1, 0, 0]])
        colors_rgb = np.array([[255, 255, 255]])
        scene_scale = 1
    else:
        # Calculate the 5th and 95th percentiles along each axis
        lower_percentile = np.percentile(vertices_3d, 5, axis=0)
        upper_percentile = np.percentile(vertices_3d, 95, axis=0)

        # Calculate the diagonal length of the percentile bounding box
        scene_scale = np.linalg.norm(upper_percentile - lower_percentile)

    colormap = matplotlib.colormaps.get_cmap("gist_rainbow")

    # Initialize a 3D scene
    scene_3d = trimesh.Scene()

    # Add point cloud data to the scene
    point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)

    scene_3d.add_geometry(point_cloud_data)

    # Prepare 4x4 matrices for camera extrinsics
    num_cameras = len(camera_poses)
    extrinsics_matrices = np.zeros((num_cameras, 4, 4))
    extrinsics_matrices[:, :3, :4] = camera_poses[:, :3, :4]
    extrinsics_matrices[:, 3, 3] = 1

    if show_cam:
        # Add camera models to the scene
        for i in range(num_cameras):
            camera_to_world = camera_poses[i]
            rgba_color = colormap(frame_rel_idx)
            current_color = tuple(int(255 * x) for x in rgba_color[:3])

            integrate_camera_into_scene(
                scene_3d, camera_to_world, current_color, scene_scale
            )

    return scene_3d


def integrate_camera_into_scene(
    scene: trimesh.Scene,
    transform: np.ndarray,
    face_colors: tuple,
    scene_scale: float,
):
    """
    Integrates a fake camera mesh into the 3D scene.

    Args:
        scene (trimesh.Scene): The 3D scene to add the camera model.
        transform (np.ndarray): Transformation matrix for camera positioning.
        face_colors (tuple): Color of the camera face.
        scene_scale (float): Scale of the scene.
    """

    cam_width = scene_scale * 0.025
    cam_height = scene_scale * 0.05

    # Create cone shape for camera
    rot_45_degree = np.eye(4)
    rot_45_degree[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
    rot_45_degree[2, 3] = -cam_height

    opengl_transform = get_opengl_conversion_matrix()
    # Combine transformations
    complete_transform = transform @ opengl_transform @ rot_45_degree
    camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)

    # Generate mesh for the camera
    slight_rotation = np.eye(4)
    slight_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()

    vertices_combined = np.concatenate(
        [
            camera_cone_shape.vertices,
            0.95 * camera_cone_shape.vertices,
            transform_points(slight_rotation, camera_cone_shape.vertices),
        ]
    )
    vertices_transformed = transform_points(complete_transform, vertices_combined)

    mesh_faces = compute_camera_faces(camera_cone_shape)

    # Add the camera mesh to the scene
    camera_mesh = trimesh.Trimesh(vertices=vertices_transformed, faces=mesh_faces)
    camera_mesh.visual.face_colors[:, :3] = face_colors
    scene.add_geometry(camera_mesh)


def get_opengl_conversion_matrix() -> np.ndarray:
    """
    Constructs and returns the OpenGL conversion matrix.

    Returns:
        numpy.ndarray: A 4x4 OpenGL conversion matrix.
    """
    # Create an identity matrix
    matrix = np.identity(4)

    # Flip the y and z axes
    matrix[1, 1] = -1
    matrix[2, 2] = -1

    return matrix


def transform_points(
    transformation: np.ndarray, points: np.ndarray, dim: int = None
) -> np.ndarray:
    """
    Applies a 4x4 transformation to a set of points.

    Args:
        transformation (np.ndarray): Transformation matrix.
        points (np.ndarray): Points to be transformed.
        dim (int, optional): Dimension for reshaping the result.

    Returns:
        np.ndarray: Transformed points.
    """
    points = np.asarray(points)
    initial_shape = points.shape[:-1]
    dim = dim or points.shape[-1]

    # Apply transformation
    transformation = transformation.swapaxes(
        -1, -2
    )  # Transpose the transformation matrix
    points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]

    # Reshape the result
    result = points[..., :dim].reshape(*initial_shape, dim)
    return result


def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
    """
    Computes the faces for the camera mesh.

    Args:
        cone_shape (trimesh.Trimesh): The shape of the camera cone.

    Returns:
        np.ndarray: Array of faces for the camera mesh.
    """
    # Create pseudo cameras
    faces_list = []
    num_vertices_cone = len(cone_shape.vertices)

    for face in cone_shape.faces:
        if 0 in face:
            continue
        v1, v2, v3 = face
        v1_offset, v2_offset, v3_offset = face + num_vertices_cone
        v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone

        faces_list.extend(
            [
                (v1, v2, v2_offset),
                (v1, v1_offset, v3),
                (v3_offset, v2, v3),
                (v1, v2, v2_offset_2),
                (v1, v1_offset_2, v3),
                (v3_offset_2, v2, v3),
            ]
        )

    faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
    return np.array(faces_list)