File size: 21,102 Bytes
19da45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import argparse
import os
import random
from typing import List, Optional, Tuple

import imageio.v3 as iio
import numpy as np
import PIL
import rootutils
import torch
from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDPMScheduler,
    CogVideoXTransformer3DModel,
)
from transformers import AutoTokenizer, T5EncoderModel


rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

from aether.pipelines.aetherv1_pipeline_cogvideox import (  # noqa: E402
    AetherV1PipelineCogVideoX,
    AetherV1PipelineOutput,
)
from aether.utils.postprocess_utils import (  # noqa: E402
    align_camera_extrinsics,
    apply_transformation,
    colorize_depth,
    compute_scale,
    get_intrinsics,
    interpolate_poses,
    postprocess_pointmap,
    project,
    raymap_to_poses,
)
from aether.utils.visualize_utils import predictions_to_glb  # noqa: E402


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def seed_all(seed: int = 0) -> None:
    """
    Set random seeds of all components.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def parse_args() -> argparse.Namespace:
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(description="AetherV1-CogvideoX Inference Demo")

    parser.add_argument(
        "--task",
        type=str,
        required=True,
        choices=["reconstruction", "prediction", "planning"],
        help="Task to perform: 'reconstruction', 'prediction' or 'planning'.",
    )
    parser.add_argument(
        "--video",
        type=str,
        default=None,
        help="Path to a video file. Only used for 'reconstruction' task.",
    )
    parser.add_argument(
        "--image",
        type=str,
        default=None,
        help="Path to an image file. Only used for 'prediction' and 'planning' tasks.",
    )
    parser.add_argument(
        "--goal",
        type=str,
        default=None,
        help="Path to a goal image file. Only used for 'planning' task.",
    )
    parser.add_argument(
        "--raymap_action",
        type=str,
        default=None,
        help="Path to a raymap action file. Should be a numpy array of shape (num_frame, 6, latent_height, latent_width).",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="outputs",
        help="Path to save the outputs.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed.",
    )
    parser.add_argument(
        "--fps",
        type=int,
        default=12,
        choices=[8, 10, 12, 15, 24],
        help="Frames per second. Options: 8, 10, 12, 15, 24.",
    )
    parser.add_argument(
        "--num_inference_steps",
        type=int,
        default=None,
        help="Number of inference steps. If not specified, will use the default number of steps for the task.",
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=None,
        help="Guidance scale. If not specified, will use the default guidance scale for the task.",
    )
    parser.add_argument(
        "--use_dynamic_cfg",
        action="store_true",
        default=True,
        help="Use dynamic cfg.",
    )
    parser.add_argument(
        "--height",
        type=int,
        default=480,
        help="Height of the output video.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=720,
        help="Width of the output video.",
    )
    parser.add_argument(
        "--num_frames",
        type=int,
        default=41,
        help="Number of frames to predict.",
    )
    parser.add_argument(
        "--max_depth",
        type=float,
        default=100.0,
        help="Maximum depth of the scene in meters.",
    )
    parser.add_argument(
        "--rtol",
        type=float,
        default=0.03,
        help="Relative tolerance for depth edge detection.",
    )
    parser.add_argument(
        "--cogvideox_pretrained_model_name_or_path",
        type=str,
        default="THUDM/CogVideoX-5b-I2V",
        help="Name or path of the CogVideoX model to use.",
    )
    parser.add_argument(
        "--aether_pretrained_model_name_or_path",
        type=str,
        default="AetherWorldModel/AetherV1-CogVideoX",
        help="Name or path of the Aether model to use.",
    )
    parser.add_argument(
        "--smooth_camera",
        action="store_true",
        default=True,
        help="Smooth the camera trajectory.",
    )
    parser.add_argument(
        "--smooth_method",
        type=str,
        default="kalman",
        choices=["kalman", "simple"],
        help="Smooth method.",
    )
    parser.add_argument(
        "--sliding_window_stride",
        type=int,
        default=24,
        help="Sliding window stride (window size equals to num_frames). Only used for 'reconstruction' task.",
    )
    parser.add_argument(
        "--post_reconstruction",
        action="store_true",
        default=True,
        help="Run reconstruction after prediction for better quality. Only used for 'prediction' and 'planning' tasks.",
    )
    parser.add_argument(
        "--pointcloud_save_frame_interval",
        type=int,
        default=10,
        help="Pointcloud save frame interval.",
    )
    parser.add_argument(
        "--align_pointmaps",
        action="store_true",
        default=False,
        help="Align pointmaps.",
    )
    return parser.parse_args()


def build_pipeline(args: argparse.Namespace) -> AetherV1PipelineCogVideoX:
    pipeline = AetherV1PipelineCogVideoX(
        tokenizer=AutoTokenizer.from_pretrained(
            args.cogvideox_pretrained_model_name_or_path,
            subfolder="tokenizer",
        ),
        text_encoder=T5EncoderModel.from_pretrained(
            args.cogvideox_pretrained_model_name_or_path, subfolder="text_encoder"
        ),
        vae=AutoencoderKLCogVideoX.from_pretrained(
            args.cogvideox_pretrained_model_name_or_path, subfolder="vae"
        ),
        scheduler=CogVideoXDPMScheduler.from_pretrained(
            args.cogvideox_pretrained_model_name_or_path, subfolder="scheduler"
        ),
        transformer=CogVideoXTransformer3DModel.from_pretrained(
            args.aether_pretrained_model_name_or_path, subfolder="transformer"
        ),
    )
    pipeline.vae.enable_slicing()
    pipeline.vae.enable_tiling()
    pipeline.to(device)
    return pipeline


def get_window_starts(
    total_frames: int, sliding_window_size: int, temporal_stride: int
) -> List[int]:
    """Calculate window start indices."""
    starts = list(
        range(
            0,
            total_frames - sliding_window_size + 1,
            temporal_stride,
        )
    )
    if (
        total_frames > sliding_window_size
        and (total_frames - sliding_window_size) % temporal_stride != 0
    ):
        starts.append(total_frames - sliding_window_size)
    return starts


def blend_and_merge_window_results(
    window_results: List[AetherV1PipelineOutput],
    window_indices: List[int],
    args: argparse.Namespace,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    """Blend and merge window results."""
    merged_rgb = None
    merged_disparity = None
    merged_poses = None
    merged_focals = None
    if args.align_pointmaps:
        merged_pointmaps = None

    w1 = window_results[0].disparity

    for idx, (window_result, t_start) in enumerate(zip(window_results, window_indices)):
        t_end = t_start + window_result.rgb.shape[0]
        if idx == 0:
            merged_rgb = window_result.rgb
            merged_disparity = window_result.disparity
            pointmap_dict = postprocess_pointmap(
                window_result.disparity,
                window_result.raymap,
                vae_downsample_scale=8,
                ray_o_scale_inv=0.1,
                smooth_camera=args.smooth_camera,
                smooth_method=args.smooth_method if args.smooth_camera else "none",
            )
            merged_poses = pointmap_dict["camera_pose"]
            merged_focals = (
                pointmap_dict["intrinsics"][:, 0, 0]
                + pointmap_dict["intrinsics"][:, 1, 1]
            ) / 2
            if args.align_pointmaps:
                merged_pointmaps = pointmap_dict["pointmap"]
        else:
            overlap_t = window_indices[idx - 1] + window_result.rgb.shape[0] - t_start

            window_disparity = window_result.disparity

            # Align disparity
            disp_mask = window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]) > 0.1
            scale = compute_scale(
                window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]),
                merged_disparity[-overlap_t:].reshape(1, -1, w1.shape[-1]),
                disp_mask.reshape(1, -1, w1.shape[-1]),
            )
            window_disparity = scale * window_disparity

            # Blend disparity
            result_disparity = np.ones((t_end, *w1.shape[1:]))
            result_disparity[:t_start] = merged_disparity[:t_start]
            result_disparity[t_start + overlap_t :] = window_disparity[overlap_t:]
            weight = np.linspace(1, 0, overlap_t)[:, None, None]
            result_disparity[t_start : t_start + overlap_t] = merged_disparity[
                t_start : t_start + overlap_t
            ] * weight + window_disparity[:overlap_t] * (1 - weight)
            merged_disparity = result_disparity

            # Blend RGB
            result_rgb = np.ones((t_end, *w1.shape[1:], 3))
            result_rgb[:t_start] = merged_rgb[:t_start]
            result_rgb[t_start + overlap_t :] = window_result.rgb[overlap_t:]
            weight_rgb = np.linspace(1, 0, overlap_t)[:, None, None, None]
            result_rgb[t_start : t_start + overlap_t] = merged_rgb[
                t_start : t_start + overlap_t
            ] * weight_rgb + window_result.rgb[:overlap_t] * (1 - weight_rgb)
            merged_rgb = result_rgb

            # Align poses
            window_raymap = window_result.raymap
            window_poses, window_Fov_x, window_Fov_y = raymap_to_poses(
                window_raymap, ray_o_scale_inv=0.1
            )
            rel_r, rel_t, rel_s = align_camera_extrinsics(
                torch.from_numpy(window_poses[:overlap_t]),
                torch.from_numpy(merged_poses[-overlap_t:]),
            )
            aligned_window_poses = (
                apply_transformation(
                    torch.from_numpy(window_poses),
                    rel_r,
                    rel_t,
                    rel_s,
                    return_extri=True,
                )
                .cpu()
                .numpy()
            )

            result_poses = np.ones((t_end, 4, 4))
            result_poses[:t_start] = merged_poses[:t_start]
            result_poses[t_start + overlap_t :] = aligned_window_poses[overlap_t:]

            # Interpolate poses in overlap region
            weights = np.linspace(1, 0, overlap_t)
            for t in range(overlap_t):
                weight = weights[t]
                pose1 = merged_poses[t_start + t]
                pose2 = aligned_window_poses[t]
                result_poses[t_start + t] = interpolate_poses(pose1, pose2, weight)

            merged_poses = result_poses

            # Align intrinsics
            window_intrinsics, _ = get_intrinsics(
                batch_size=window_poses.shape[0],
                h=window_result.disparity.shape[1],
                w=window_result.disparity.shape[2],
                fovx=window_Fov_x,
                fovy=window_Fov_y,
            )
            window_focals = (
                window_intrinsics[:, 0, 0] + window_intrinsics[:, 1, 1]
            ) / 2
            scale = (merged_focals[-overlap_t:] / window_focals[:overlap_t]).mean()
            window_focals = scale * window_focals
            result_focals = np.ones((t_end,))
            result_focals[:t_start] = merged_focals[:t_start]
            result_focals[t_start + overlap_t :] = window_focals[overlap_t:]
            weight = np.linspace(1, 0, overlap_t)
            result_focals[t_start : t_start + overlap_t] = merged_focals[
                t_start : t_start + overlap_t
            ] * weight + window_focals[:overlap_t] * (1 - weight)
            merged_focals = result_focals

            if args.align_pointmaps:
                # Align pointmaps
                window_pointmaps = postprocess_pointmap(
                    result_disparity[t_start:],
                    window_raymap,
                    vae_downsample_scale=8,
                    camera_pose=aligned_window_poses,
                    focal=window_focals,
                    ray_o_scale_inv=0.1,
                    smooth_camera=args.smooth_camera,
                    smooth_method=args.smooth_method if args.smooth_camera else "none",
                )
                result_pointmaps = np.ones((t_end, *w1.shape[1:], 3))
                result_pointmaps[:t_start] = merged_pointmaps[:t_start]
                result_pointmaps[t_start + overlap_t :] = window_pointmaps["pointmap"][
                    overlap_t:
                ]
                weight = np.linspace(1, 0, overlap_t)[:, None, None, None]
                result_pointmaps[t_start : t_start + overlap_t] = merged_pointmaps[
                    t_start : t_start + overlap_t
                ] * weight + window_pointmaps["pointmap"][:overlap_t] * (1 - weight)
                merged_pointmaps = result_pointmaps

    # project to pointmaps
    intrinsics = [
        np.array([[f, 0, 0.5 * args.width], [0, f, 0.5 * args.height], [0, 0, 1]])
        for f in merged_focals
    ]
    if args.align_pointmaps:
        pointmaps = merged_pointmaps
    else:
        pointmaps = np.stack(
            [
                project(
                    1 / np.clip(merged_disparity[i], 1e-8, 1e8),
                    intrinsics[i],
                    merged_poses[i],
                )
                for i in range(merged_poses.shape[0])
            ]
        )

    return merged_rgb, merged_disparity, merged_poses, pointmaps


def save_output(
    rgb: np.ndarray,
    disparity: np.ndarray,
    poses: Optional[np.ndarray] = None,
    raymap: Optional[np.ndarray] = None,
    pointmap: Optional[np.ndarray] = None,
    args: argparse.Namespace = None,
) -> None:
    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)

    if pointmap is None:
        assert raymap is not None, "Raymap is required for saving pointmap."
        pointmap_dict = postprocess_pointmap(
            disparity,
            raymap,
            vae_downsample_scale=8,
            ray_o_scale_inv=0.1,
            smooth_camera=args.smooth_camera,
            smooth_method=args.smooth_method,
        )
        pointmap = pointmap_dict["pointmap"]

    if poses is None:
        assert raymap is not None, "Raymap is required for saving poses."
        poses, _, _ = raymap_to_poses(raymap, ray_o_scale_inv=0.1)

    if args.task == "reconstruction":
        filename = f"reconstruction_{args.video.split('/')[-1].split('.')[0]}"
    elif args.task == "prediction":
        filename = f"prediction_{args.image.split('/')[-1].split('.')[0]}"
    elif args.task == "planning":
        filename = f"planning_{args.image.split('/')[-1].split('.')[0]}_{args.goal.split('/')[-1].split('.')[0]}"

    filename = os.path.join(output_dir, filename)

    iio.imwrite(
        f"{filename}_rgb.mp4",
        (np.clip(rgb, 0, 1) * 255).astype(np.uint8),
        fps=12,
    )
    iio.imwrite(
        f"{filename}_disparity.mp4",
        (colorize_depth(disparity) * 255).astype(np.uint8),
        fps=12,
    )

    print("Building GLB scene")
    for frame_idx in range(pointmap.shape[0])[:: args.pointcloud_save_frame_interval]:
        predictions = {
            "world_points": pointmap[frame_idx : frame_idx + 1],
            "images": rgb[frame_idx : frame_idx + 1],
            "depths": 1 / np.clip(disparity[frame_idx : frame_idx + 1], 1e-8, 1e8),
            "camera_poses": poses[frame_idx : frame_idx + 1],
        }
        scene_3d = predictions_to_glb(
            predictions,
            filter_by_frames="all",
            show_cam=True,
            max_depth=args.max_depth,
            rtol=args.rtol,
            frame_rel_idx=float(frame_idx) / pointmap.shape[0],
        )
        scene_3d.export(f"{filename}_pointcloud_frame_{frame_idx}.glb")
    print("GLB Scene built")


def main() -> None:
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    args = parse_args()
    seed_all(args.seed)

    if args.num_inference_steps is None:
        args.num_inference_steps = 4 if args.task == "reconstruction" else 50

    if args.guidance_scale is None:
        args.guidance_scale = 1.0 if args.task == "reconstruction" else 3.0

    pipeline = build_pipeline(args)

    if args.task == "reconstruction":
        assert args.video is not None, "Video is required for reconstruction task."
        assert args.image is None, "Image is not required for reconstruction task."
        assert args.goal is None, "Goal is not required for reconstruction task."

        video = iio.imread(args.video).astype(np.float32) / 255.0
        image, goal = None, None
    elif args.task == "prediction":
        assert args.image is not None, "Image is required for prediction task."
        assert args.goal is None, "Goal is not required for prediction task."

        image = PIL.Image.open(args.image)
        video, goal = None, None
    elif args.task == "planning":
        assert args.image is not None, "Image is required for planning task."
        assert args.goal is not None, "Goal is required for planning task."

        image = PIL.Image.open(args.image)
        goal = PIL.Image.open(args.goal)

        video = None

    if args.raymap_action is not None:
        raymap = np.load(args.raymap_action)
    else:
        raymap = None

    if args.task != "reconstruction":
        output = pipeline(
            task=args.task,
            image=image,
            video=video,
            goal=goal,
            raymap=raymap,
            height=args.height,
            width=args.width,
            num_frames=args.num_frames,
            fps=args.fps,
            num_inference_steps=args.num_inference_steps,
            guidance_scale=args.guidance_scale,
            use_dynamic_cfg=args.use_dynamic_cfg,
            generator=torch.Generator(device=device).manual_seed(args.seed),
            return_dict=True,
        )
        if not args.post_reconstruction:
            save_output(
                rgb=output.rgb,
                disparity=output.disparity,
                raymap=output.raymap,
                args=args,
            )
        else:
            recon_output = pipeline(
                task="reconstruction",
                video=output.rgb,
                height=args.height,
                width=args.width,
                num_frames=args.num_frames,
                fps=args.fps,
                num_inference_steps=4,
                guidance_scale=1.0,  # we don't need guidance scale for reconstruction task
                use_dynamic_cfg=False,
                generator=torch.Generator(device=device).manual_seed(args.seed),
            )
            save_output(
                rgb=output.rgb,
                disparity=recon_output.disparity,
                raymap=recon_output.raymap,
                args=args,
            )
    else:
        # for reconstruction task, we have to employ sliding window on long videos
        window_results = []
        window_indices = get_window_starts(
            len(video), args.num_frames, args.sliding_window_stride
        )
        for start_idx in window_indices:
            output = pipeline(
                task=args.task,
                image=None,
                goal=None,
                video=video[start_idx : start_idx + args.num_frames],
                raymap=raymap[start_idx : start_idx + args.num_frames]
                if raymap is not None
                else None,
                height=args.height,
                width=args.width,
                num_frames=args.num_frames,
                fps=args.fps,
                num_inference_steps=args.num_inference_steps,
                guidance_scale=1.0,  # we don't need guidance scale for reconstruction task
                use_dynamic_cfg=False,
                generator=torch.Generator(device=device).manual_seed(args.seed),
            )
            window_results.append(output)

        # merge window results
        (
            merged_rgb,
            merged_disparity,
            merged_poses,
            pointmaps,
        ) = blend_and_merge_window_results(window_results, window_indices, args)
        save_output(
            rgb=merged_rgb,
            disparity=merged_disparity,
            poses=merged_poses,
            pointmap=pointmaps,
            args=args,
        )


if __name__ == "__main__":
    main()